Do you want to publish a course? Click here

Small-Angle X-Ray Scattering Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles

69   0   0.0 ( 0 )
 Added by Hue Sun Chan
 Publication date 2021
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Physically, disordered ensembles of non-homopolymeric polypeptides are expected to be heterogeneous; i.e., they should differ from those homogeneous ensembles of homopolymers that harbor an essentially unique relationship between average values of end-to-end distance $R_{rm EE}$ and radius of gyration $R_{rm g}$. It was posited recently, however, that small-angle X-ray scattering (SAXS) data on conformational dimensions of disordered proteins can be rationalized almost exclusively by homopolymer ensembles. Assessing this perspective, chain-model simulations are used to evaluate the discriminatory power of SAXS-determined molecular form factors (MFFs) with regard to homogeneous versus heterogeneous ensembles. The general approach adopted here is not bound by any assumption about ensemble encodability, in that the postulated heterogeneous ensembles we evaluated are not restricted to those entailed by simple interaction schemes. Our analysis of MFFs for certain heterogeneous ensembles with more narrowly distributed $R_{rm EE}$ and $R_{rm g}$ indicates that while they deviates from MFFs of homogeneous ensembles, the differences can be rather small. Remarkably, some heterogeneous ensembles with asphericity and $R_{rm EE}$ drastically different from those of homogeneous ensembles can nonetheless exhibit practically identical MFFs, demonstrating that SAXS MFFs do not afford unique characterizations of basic properties of conformational ensembles in general. In other words, the ensemble to MFF mapping is practically many-to-one and likely non-smooth. Heteropolymeric variations of the $R_{rm EE}$--$R_{rm g}$ relationship were further showcased using an analytical perturbation theory developed here for flexible heteropolymers. Ramifications of our findings for interpretation of experimental data are discussed.



rate research

Read More

We have developed a global analysis model for randomly oriented, fully hydrated inverted hexagonal (H$_text{II}$) phases formed by many amphiphiles in aqueous solution, including membrane lipids. The model is based on a structure factor for hexagonally packed rods and a compositional model for the scattering length density (SLD) enabling also the analysis of positionally weakly correlated H$_text{II}$ phases. For optimization of the adjustable parameters we used Bayesian probability theory, which allows to retrieve parameter correlations in much more detail than standard analysis techniques, and thereby enables a realistic error analysis. The model was applied to different phosphatidylethanolamines including previously not reported H$_text{II}$ data for diC14:0 and diC16:1 phosphatidylethanolamine. The extracted structural features include intrinsic lipid curvature, hydrocarbon chain length and area per lipid at the position of the neutral plane.
Intrinsically disordered proteins (IDPs) do not possess well-defined three-dimensional structures in solution under physiological conditions. We develop all-atom, united-atom, and coarse-grained Langevin dynamics simulations for the IDP alpha-synuclein that include geometric, attractive hydrophobic, and screened electrostatic interactions and are calibrated to the inter-residue separations measured in recent smFRET experiments. We find that alpha-synuclein is disordered with conformational statistics that are intermediate between random walk and collapsed globule behavior. An advantage of calibrated molecular simulations over constraint methods is that physical forces act on all residues, not only on residue pairs that are monitored experimentally, and these simulations can be used to study oligomerization and aggregation of multiple alpha-synuclein proteins that may precede amyloid formation.
151 - Yoshitake Sakae 2015
We combined the genetic crossover, which is one of the operations of genetic algorithm, and replica-exchange method in parallel molecular dynamics simulations. The genetic crossover and replica-exchange method can search the global conformational space by exchanging the corresponding parts between a pair of conformations of a protein. In this study, we applied this method to an $alpha$-helical protein, Trp-cage mini protein, which has 20 amino-acid residues. The conformations obtained from the simulations are in good agreement with the experimental results.
The SARS-CoV-2 spike (S) protein facilitates viral infection, and has been the focus of many structure determination efforts. This paper studies the conformations of loops in the S protein based on the available Protein Data Bank (PDB) structures. Loops, as flexible regions of the protein, are known to be involved in binding and can adopt multiple conformations. We identify the loop regions of the S protein, and examine their structural variability across the PDB. While most loops had essentially one stable conformation, 17 of 44 loop regions were observed to be structurally variable with multiple substantively distinct conformations. Loop modeling methods were then applied to the S protein loop targets, and loops with multiple conformations were found to be more challenging for the methods to predict accurately. Sequence variants and the up/down structural states of the receptor binding domain were also considered in the analysis.
510 - Yoshitake Sakae 2015
Many proteins carry out their biological functions by forming the characteristic tertiary structures. Therefore, the search of the stable states of proteins by molecular simulations is important to understand their functions and stabilities. However, getting the stable state by conformational search is difficult, because the energy landscape of the system is characterized by many local minima separated by high energy barriers. In order to overcome this difficulty, various sampling and optimization methods for conformations of proteins have been proposed. In this study, we propose a new conformational search method for proteins by using genetic crossover and Metropolis criterion. We applied this method to an $alpha$-helical protein. The conformations obtained from the simulations are in good agreement with the experimental results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا