Robot navigation in a safe way for complex and crowded situations is studied in this work. When facing complex environments with both static and dynamic obstacles, in existing works unicycle nonholonomic robots are prone to two extreme behaviors, one is to fall into dead ends formed by obstacles, and the other is to not complete the navigation task in time due to excessive collision avoidance.As a result, we propose the R-SARL framework, which is based on a deep reinforcement learning algorithm and where we augment the reward function to avoid collisions. In particular, we estimate unsafe interactions between the robot and obstacles in a look-ahead distance and penalize accordingly, so that the robot can avoid collisions in advance and reach its destination safely.Furthermore, we penalize frequent excessive detours to reduce the timeout and thus improve the efficiency of navigation.We test our method in various challenging and complex crowd navigation tasks. The results show that our method improves navigation performance and outperforms state-of-the-art methods.