Do you want to publish a course? Click here

Percolation phase transition on planar spin systems

94   0   0.0 ( 0 )
 Added by Caio Alves
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this article we study the sharpness of the phase transition for percolation models defined on top of planar spin systems. The two examples that we treat in detail concern the Glauber dynamics for the Ising model and a Dynamic Bootstrap process. For both of these models we prove that their phase transition is continuous and sharp, providing also quantitative estimates on the two point connectivity. The techniques that we develop in this work can be applied to a variety of different dependent percolation models and we discuss some of the problems that can be tackled in a similar fashion. In the last section of the paper we present a long list of open problems that would require new ideas to be attacked.



rate research

Read More

86 - Zhongyang Li 2020
We prove that for a non-amenable, locally finite, connected, transitive, planar graph with one end, any automorphism invariant site percolation on the graph does not have exactly 1 infinite 1-cluster and exactly 1 infinite 0-cluster a.s. If we further assume that the site percolation is insertion-tolerant and a.s.~there exists a unique infinite 0-cluster, then a.s.~there are no infinite 1-clusters. The proof is based on the analysis of a class of delicately constructed interfaces between clusters and contours. Applied to the case of i.i.d.~Bernoulli site percolation on infinite, connected, locally finite, transitive, planar graphs, these results solve two conjectures of Benjamini and Schramm (Conjectures 7 and 8 in cite{bs96}) in 1996.
76 - Zhongyang Li 2020
We study infinite ``$+$ or ``$-$ clusters for an Ising model on an connected, transitive, non-amenable, planar, one-ended graph $G$ with finite vertex degree. If the critical percolation probability $p_c^{site}$ for the i.i.d.~Bernoulli site percolation on $G$ is less than $frac{1}{2}$, we find an explicit region for the coupling constant of the Ising model such that there are infinitely many infinite ``$+$-clusters and infinitely many infinite ``$-$-clusters, while the random cluster representation of the Ising model has no infinite 1-clusters. If $p_c^{site}>frac{1}{2}$, we obtain a lower bound for the critical probability in the random cluster representation of the Ising model in terms of $p_c^{site}$.
We study the independent alignment percolation model on $mathbb{Z}^d$ introduced by Beaton, Grimmett and Holmes [arXiv:1908.07203]. It is a model for random intersecting line segments defined as follows. First the sites of $mathbb{Z}^d$ are independently declared occupied with probability $p$ and vacant otherwise. Conditional on the configuration of occupied vertices, consider the set of all line segments that are parallel to the coordinate axis, whose extremes are occupied vertices and that do not traverse any other occupied vertex. Declare independently the segments on this set open with probability $lambda$ and closed otherwise. All the edges that lie on open segments are also declared open giving rise to a bond percolation model in $mathbb{Z}^d$. We show that for any $d geq 2$ and $p in (0,1]$ the critical value for $lambda$ satisfies $lambda_c(p)<1$ completing the proof that the phase transition is non-trivial over the whole interval $(0,1]$. We also show that the critical curve $p mapsto lambda_c(p)$ is continuous at $p=1$, answering a question posed by the authors in [arXiv:1908.07203].
104 - Jan Czajkowski 2011
I consider p-Bernoulli bond percolation on graphs of vertex-transitive tilings of the hyperbolic plane with finite sided faces (or, equivalently, on transitive, nonamenable, planar graphs with one end) and on their duals. It is known (Benjamini and Schramm) that in such a graph G we have three essential phases of percolation, i. e. 0 < p_c(G) < p_u(G) < 1, where p_c is the critical probability and p_u - the unification probability. I prove that in the middle phase a. s. all the ends of all the infinite clusters have one-point boundary in the boundary of H^2. This result is similar to some results of Lalley.
The cumulant ratios up to fourth order of the $Z$ distributions of the largest fragment in spectator fragmentation following $^{107,124}$Sn+Sn and $^{124}$La+Sn collisions at 600 MeV/nucleon have been investigated. They are found to exhibit the signatures of a second-order phase transition established with cubic bond percolation and previously observed in the ALADIN experimental data for fragmentation of $^{197}$Au projectiles at similar energies. The deduced pseudocritical points are found to be only weakly dependent on the $A/Z$ ratio of the fragmenting spectator source. The same holds for the corresponding chemical freeze-out temperatures of close to 6 MeV. The experimental cumulant distributions are quantitatively reproduced with the Statistical Multifragmentation Model and parameters used to describe the experimental fragment multiplicities, isotope distributions and their correlations with impact-parameter related observables in these reactions. The characteristic coincidence of the zero transition of the skewness with the minimum of the kurtosis excess appears to be a generic property of statistical models and is found to coincide with the maximum of the heat capacity in the canonical thermodynamic fragmentation model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا