Do you want to publish a course? Click here

Local density of states and scattering rates across the many-body localization transition

189   0   0.0 ( 0 )
 Added by V Ravi Chandra
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Characterizing the many-body localization (MBL) transition in strongly disordered and interacting quantum systems is an important issue in the field of condensed matter physics. We study the single particle Greens functions for a disordered interacting system in one dimension using exact diagnonalization in the infinite temperature limit. We provide strong evidence that the typical values of the local density of states and the scattering rate, evaluated using the computed eigenstate Greens functions and self energies, can be used to track the delocalization to MBL transition. In the delocalized phase, the typical values of the local density of states and the scattering rate are of the order of the corresponding average values while in the MBL phase, the typical values for both the quantities become vanishingly small. The probability distribution functions of the local density of states and the scattering rate are broad log-normal distributions in the delocalized phase while the distributions become very narrow and sharply peaked close to zero in the MBL phase. We also study the eigenstate Greens function for all the many-body eigenstates and demonstrate that both, the energy resolved typical scattering rate and the typical local density of states, carry signatures of the many-body mobility edges.



rate research

Read More

The many-body localization transition (MBLT) between ergodic and many-body localized phase in disordered interacting systems is a subject of much recent interest. Statistics of eigenenergies is known to be a powerful probe of crossovers between ergodic and integrable systems in simpler examples of quantum chaos. We consider the evolution of the spectral statistics across the MBLT, starting with mapping to a Brownian motion process that analytically relates the spectral properties to the statistics of matrix elements. We demonstrate that the flow from Wigner-Dyson to Poisson statistics is a two-stage process. First, fractal enhancement of matrix elements upon approaching the MBLT from the metallic side produces an effective power-law interaction between energy levels, and leads to a plasma model for level statistics. At the second stage, the gas of eigenvalues has local interaction and level statistics belongs to a semi-Poisson universality class. We verify our findings numerically on the XXZ spin chain. We provide a microscopic understanding of the level statistics across the MBLT and discuss implications for the transition that are strong constraints on possible theories.
Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across the many-body localization transition (MBLT) in a disordered spin chain, and use it to characterize the breakdown of the eigenstate thermalization hypothesis and to extract the many-body Thouless energy. We find a wide critical region around the MBLT, where Thouless energy becomes smaller than the level spacing, while matrix elements show critical dependence on the energy difference. In the same region, matrix elements, viewed as amplitudes of a fictitious wave function, exhibit strong multifractality. Our findings show that the correlation length becomes larger than the accessible system sizes in a broad range of disorder strength values, and shed light on the critical behaviour of MBL systems.
92 - Bitan De , Piotr Sierant , 2021
The level statistics in the transition between delocalized and localized {phases of} many body interacting systems is {considered}. We recall the joint probability distribution for eigenvalues resulting from the statistical mechanics for energy level dynamics as introduced by Pechukas and Yukawa. The resulting single parameter analytic distribution is probed numerically {via Monte Carlo method}. The resulting higher order spacing ratios are compared with data coming from different {quantum many body systems}. It is found that this Pechukas-Yukawa distribution compares favorably with {$beta$--Gaussian ensemble -- a single parameter model of level statistics proposed recently in the context of disordered many-body systems.} {Moreover, the Pechukas-Yukawa distribution is also} only slightly inferior to the two-parameter $beta$-h ansatz shown {earlier} to reproduce {level statistics of} physical systems remarkably well.
We study the many body localization (MBL) transition for interacting fermions subject to quasiperiodic potentials by constructing the local integrals of motion (LIOMs) in the MBL phase as time-averaged local operators. We study numerically how these time-averaged operators evolve across the MBL transition. We find that the norm of such time-averaged operators drops discontinuously to zero across the transition; as we discuss, this implies that LIOMs abruptly become unstable at some critical localization length of order unity. We analyze the LIOMs using hydrodynamic projections and isolating the part of the operator that is associated with interactions. Equipped with this data we perform a finite-size scaling analysis of the quasiperiodic MBL transition. Our results suggest that the quasiperiodic MBL transition occurs at considerably stronger quasiperiodic modulations, and has a larger correlation-length critical exponent, than previous studies had found.
We discuss the problem of localization in two dimensional electron systems in the quantum Hall (single Landau level) regime. After briefly summarizing the well-studied problem of Anderson localization in the non-interacting case, we concentrate on the problem of disorder induced many-body localization (MBL) in the presence of electron-electron interactions using numerical exact diagonalization and eigenvalue spacing statistics as a function of system size. We provide evidence showing that MBL is not attainable in a single Landau level with short range (white noise) disorder in the thermodynamic limit. We then study the interplay of topology and localization, by contrasting the behavior of topological and nontopological subbands arising from a single Landau level in two models - (i) a pair of extremely flat Hofstadter bands with an optimally chosen periodic potential, and (ii) a Landau level with a split-off nontopological impurity band. Both models provide convincing evidence for the strong effect of topology on the feasibility of many-body localization as well as slow dynamics starting from a nonequilibrium state with charge imbalance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا