Do you want to publish a course? Click here

When Liebigs Barrel Meets Facial Landmark Detection: A Practical Model

242   0   0.0 ( 0 )
 Added by Haibo Jin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In recent years, significant progress has been made in the research of facial landmark detection. However, few prior works have thoroughly discussed about models for practical applications. Instead, they often focus on improving a couple of issues at a time while ignoring the others. To bridge this gap, we aim to explore a practical model that is accurate, robust, efficient, generalizable, and end-to-end trainable at the same time. To this end, we first propose a baseline model equipped with one transformer decoder as detection head. In order to achieve a better accuracy, we further propose two lightweight modules, namely dynamic query initialization (DQInit) and query-aware memory (QAMem). Specifically, DQInit dynamically initializes the queries of decoder from the inputs, enabling the model to achieve as good accuracy as the ones with multiple decoder layers. QAMem is designed to enhance the discriminative ability of queries on low-resolution feature maps by assigning separate memory values to each query rather than a shared one. With the help of QAMem, our model removes the dependence on high-resolution feature maps and is still able to obtain superior accuracy. Extensive experiments and analysis on three popular benchmarks show the effectiveness and practical advantages of the proposed model. Notably, our model achieves new state of the art on WFLW as well as competitive results on 300W and COFW, while still running at 50+ FPS.

rate research

Read More

In this work, we use facial landmarks to make the deformation for facial images more authentic. The deformation includes the expansion of eyes and the shrinking of noses, mouths, and cheeks. An advanced 106-point facial landmark detector is utilized to provide control points for deformation. Bilinear interpolation is used in the expansion and Moving Least Squares methods (MLS) including Affine Deformation, Similarity Deformation and Rigid Deformation are used in the shrinking. We compare the running time as well as the quality of deformed images using different MLS methods. The experimental results show that the Rigid Deformation which can keep other parts of the images unchanged performs better even if it takes the longest time.
Facial landmark detection has been studied over decades. Numerous neural network (NN)-based approaches have been proposed for detecting landmarks, especially the convolutional neural network (CNN)-based approaches. In general, CNN-based approaches can be divided into regression and heatmap approaches. However, no research systematically studies the characteristics of different approaches. In this paper, we investigate both CNN-based approaches, generalize their advantages and disadvantages, and introduce a variation of the heatmap approach, a pixel-wise classification (PWC) model. To the best of our knowledge, using the PWC model to detect facial landmarks have not been comprehensively studied. We further design a hybrid loss function and a discrimination network for strengthening the landmarks interrelationship implied in the PWC model to improve the detection accuracy without modifying the original model architecture. Six common facial landmark datasets, AFW, Helen, LFPW, 300-W, IBUG, and COFW are adopted to train or evaluate our model. A comprehensive evaluation is conducted and the result shows that the proposed model outperforms other models in all tested datasets.
Despite excellent progress has been made, the performance of deep learning based algorithms still heavily rely on specific datasets, which are difficult to extend due to labor-intensive labeling. Moreover, because of the advancement of new applications, initial definition of data annotations might not always meet the requirements of new functionalities. Thus, there is always a great demand in customized data annotations. To address the above issues, we propose the Few-Shot Model Adaptation (FSMA) framework and demonstrate its potential on several important tasks on Faces. The FSMA first acquires robust facial image embeddings by training an adversarial auto-encoder using large-scale unlabeled data. Then the model is equipped with feature adaptation and fusion layers, and adapts to the target task efficiently using a minimal amount of annotated images. The FSMA framework is prominent in its versatility across a wide range of facial image applications. The FSMA achieves state-of-the-art few-shot landmark detection performance and it offers satisfying solutions for few-shot face segmentation, stylization and facial shadow removal tasks for the first time.
We present a method for highly efficient landmark detection that combines deep convolutional neural networks with well established model-based fitting algorithms. Motivated by established model-based fitting methods such as active shapes, we use a PCA of the landmark positions to allow generative modeling of facial landmarks. Instead of computing the model parameters using iterative optimization, the PCA is included in a deep neural network using a novel layer type. The network predicts model parameters in a single forward pass, thereby allowing facial landmark detection at several hundreds of frames per second. Our architecture allows direct end-to-end training of a model-based landmark detection method and shows that deep neural networks can be used to reliably predict model parameters directly without the need for an iterative optimization. The method is evaluated on different datasets for facial landmark detection and medical image segmentation. PyTorch code is freely available at https://github.com/justusschock/shapenet
Recently, deep learning based facial landmark detection has achieved great success. Despite this, we notice that the semantic ambiguity greatly degrades the detection performance. Specifically, the semantic ambiguity means that some landmarks (e.g. those evenly distributed along the face contour) do not have clear and accurate definition, causing inconsistent annotations by annotators. Accordingly, these inconsistent annotations, which are usually provided by public databases, commonly work as the ground-truth to supervise network training, leading to the degraded accuracy. To our knowledge, little research has investigated this problem. In this paper, we propose a novel probabilistic model which introduces a latent variable, i.e. the real ground-truth which is semantically consistent, to optimize. This framework couples two parts (1) training landmark detection CNN and (2) searching the real ground-truth. These two parts are alternatively optimized: the searched real ground-truth supervises the CNN training; and the trained CNN assists the searching of real ground-truth. In addition, to recover the unconfidently predicted landmarks due to occlusion and low quality, we propose a global heatmap correction unit (GHCU) to correct outliers by considering the global face shape as a constraint. Extensive experiments on both image-based (300W and AFLW) and video-based (300-VW) databases demonstrate that our method effectively improves the landmark detection accuracy and achieves the state of the art performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا