No Arabic abstract
We study the problem of best arm identification in linear bandits in the fixed-budget setting. By leveraging properties of the G-optimal design and incorporating it into the arm allocation rule, we design a parameter-free algorithm, Optimal Design-based Linear Best Arm Identification (OD-LinBAI). We provide a theoretical analysis of the failure probability of OD-LinBAI. While the performances of existing methods (e.g., BayesGap) depend on all the optimality gaps, OD-LinBAI depends on the gaps of the top $d$ arms, where $d$ is the effective dimension of the linear bandit instance. Furthermore, we present a minimax lower bound for this problem. The upper and lower bounds show that OD-LinBAI is minimax optimal up to multiplicative factors in the exponent. Finally, numerical experiments corroborate our theoretical findings.
In the classical best arm identification (Best-$1$-Arm) problem, we are given $n$ stochastic bandit arms, each associated with a reward distribution with an unknown mean. We would like to identify the arm with the largest mean with probability at least $1-delta$, using as few samples as possible. Understanding the sample complexity of Best-$1$-Arm has attracted significant attention since the last decade. However, the exact sample complexity of the problem is still unknown. Recently, Chen and Li made the gap-entropy conjecture concerning the instance sample complexity of Best-$1$-Arm. Given an instance $I$, let $mu_{[i]}$ be the $i$th largest mean and $Delta_{[i]}=mu_{[1]}-mu_{[i]}$ be the corresponding gap. $H(I)=sum_{i=2}^nDelta_{[i]}^{-2}$ is the complexity of the instance. The gap-entropy conjecture states that $Omegaleft(H(I)cdotleft(lndelta^{-1}+mathsf{Ent}(I)right)right)$ is an instance lower bound, where $mathsf{Ent}(I)$ is an entropy-like term determined by the gaps, and there is a $delta$-correct algorithm for Best-$1$-Arm with sample complexity $Oleft(H(I)cdotleft(lndelta^{-1}+mathsf{Ent}(I)right)+Delta_{[2]}^{-2}lnlnDelta_{[2]}^{-1}right)$. If the conjecture is true, we would have a complete understanding of the instance-wise sample complexity of Best-$1$-Arm. We make significant progress towards the resolution of the gap-entropy conjecture. For the upper bound, we provide a highly nontrivial algorithm which requires [Oleft(H(I)cdotleft(lndelta^{-1} +mathsf{Ent}(I)right)+Delta_{[2]}^{-2}lnlnDelta_{[2]}^{-1}mathrm{polylog}(n,delta^{-1})right)] samples in expectation. For the lower bound, we show that for any Gaussian Best-$1$-Arm instance with gaps of the form $2^{-k}$, any $delta$-correct monotone algorithm requires $Omegaleft(H(I)cdotleft(lndelta^{-1} + mathsf{Ent}(I)right)right)$ samples in expectation.
We propose a generalization of the best arm identification problem in stochastic multi-armed bandits (MAB) to the setting where every pull of an arm is associated with delayed feedback. The delay in feedback increases the effective sample complexity of standard algorithms, but can be offset if we have access to partial feedback received before a pull is completed. We propose a general framework to model the relationship between partial and delayed feedback, and as a special case we introduce efficient algorithms for settings where the partial feedback are biased or unbiased estimators of the delayed feedback. Additionally, we propose a novel extension of the algorithms to the parallel MAB setting where an agent can control a batch of arms. Our experiments in real-world settings, involving policy search and hyperparameter optimization in computational sustainability domains for fast charging of batteries and wildlife corridor construction, demonstrate that exploiting the structure of partial feedback can lead to significant improvements over baselines in both sequential and parallel MAB.
Conditional value-at-risk (CVaR) and value-at-risk (VaR) are popular tail-risk measures in finance and insurance industries as well as in highly reliable, safety-critical uncertain environments where often the underlying probability distributions are heavy-tailed. We use the multi-armed bandit best-arm identification framework and consider the problem of identifying the arm from amongst finitely many that has the smallest CVaR, VaR, or weighted sum of CVaR and mean. The latter captures the risk-return trade-off common in finance. Our main contribution is an optimal $delta$-correct algorithm that acts on general arms, including heavy-tailed distributions, and matches the lower bound on the expected number of samples needed, asymptotically (as $delta$ approaches $0$). The algorithm requires solving a non-convex optimization problem in the space of probability measures, that requires delicate analysis. En-route, we develop new non-asymptotic empirical likelihood-based concentration inequalities for tail-risk measures which are tighter than those for popular truncation-based empirical estimators.
We study the best-arm identification problem in multi-armed bandits with stochastic, potentially private rewards, when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a (non-private) successive elimination algorithm for strictly optimal best-arm identification, we show that our algorithm is $delta$-PAC and we characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem, as we show when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support-size, and we characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.
We give a complete characterization of the complexity of best-arm identification in one-parameter bandit problems. We prove a new, tight lower bound on the sample complexity. We propose the `Track-and-Stop strategy, which we prove to be asymptotically optimal. It consists in a new sampling rule (which tracks the optimal proportions of arm draws highlighted by the lower bound) and in a stopping rule named after Chernoff, for which we give a new analysis.