We review a collection of models of random simplicial complexes together with some of the most exciting phenomena related to them. We do not attempt to cover all existing models, but try to focus on those for which many important results have been recently established rigorously in mathematics, especially in the context of algebraic topology. In application to real-world systems, the reviewed models are typically used as null models, so that we take a statistical stance, emphasizing, where applicable, the entropic properties of the reviewed models. We also review a collection of phenomena and features observed in these models, and split the presented results into two classes: phase transitions and distributional limits. We conclude with an outline of interesting future research directions.