Do you want to publish a course? Click here

Learning to Optimize Industry-Scale Dynamic Pickup and Delivery Problems

67   0   0.0 ( 0 )
 Added by Xijun Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The Dynamic Pickup and Delivery Problem (DPDP) is aimed at dynamically scheduling vehicles among multiple sites in order to minimize the cost when delivery orders are not known a priori. Although DPDP plays an important role in modern logistics and supply chain management, state-of-the-art DPDP algorithms are still limited on their solution quality and efficiency. In practice, they fail to provide a scalable solution as the numbers of vehicles and sites become large. In this paper, we propose a data-driven approach, Spatial-Temporal Aided Double Deep Graph Network (ST-DDGN), to solve industry-scale DPDP. In our method, the delivery demands are first forecast using spatial-temporal prediction method, which guides the neural network to perceive spatial-temporal distribution of delivery demand when dispatching vehicles. Besides, the relationships of individuals such as vehicles are modelled by establishing a graph-based value function. ST-DDGN incorporates attention-based graph embedding with Double DQN (DDQN). As such, it can make the inference across vehicles more efficiently compared with traditional methods. Our method is entirely data driven and thus adaptive, i.e., the relational representation of adjacent vehicles can be learned and corrected by ST-DDGN from data periodically. We have conducted extensive experiments over real-world data to evaluate our solution. The results show that ST-DDGN reduces 11.27% number of the used vehicles and decreases 13.12% total transportation cost on average over the strong baselines, including the heuristic algorithm deployed in our UAT (User Acceptance Test) environment and a variety of vanilla DRL methods. We are due to fully deploy our solution into our online logistics system and it is estimated that millions of USD logistics cost can be saved per year.



rate research

Read More

Interest in semi-autonomous systems (SAS) is growing rapidly as a paradigm to deploy autonomous systems in domains that require occasional reliance on humans. This paradigm allows service robots or autonomous vehicles to operate at varying levels of autonomy and offer safety in situations that require human judgment. We propose an introspective model of autonomy that is learned and updated online through experience and dictates the extent to which the agent can act autonomously in any given situation. We define a competence-aware system (CAS) that explicitly models its own proficiency at different levels of autonomy and the available human feedback. A CAS learns to adjust its level of autonomy based on experience to maximize overall efficiency, factoring in the cost of human assistance. We analyze the convergence properties of CAS and provide experimental results for robot delivery and autonomous driving domains that demonstrate the benefits of the approach.
A lot of efforts have been devoted to investigating how agents can learn effectively and achieve coordination in multiagent systems. However, it is still challenging in large-scale multiagent settings due to the complex dynamics between the environment and agents and the explosion of state-action space. In this paper, we design a novel Dynamic Multiagent Curriculum Learning (DyMA-CL) to solve large-scale problems by starting from learning on a multiagent scenario with a small size and progressively increasing the number of agents. We propose three transfer mechanisms across curricula to accelerate the learning process. Moreover, due to the fact that the state dimension varies across curricula,, and existing network structures cannot be applied in such a transfer setting since their network input sizes are fixed. Therefore, we design a novel network structure called Dynamic Agent-number Network (DyAN) to handle the dynamic size of the network input. Experimental results show that DyMA-CL using DyAN greatly improves the performance of large-scale multiagent learning compared with state-of-the-art deep reinforcement learning approaches. We also investigate the influence of three transfer mechanisms across curricula through extensive simulations.
We introduce a learning-based framework to optimize tensor programs for deep learning workloads. Efficient implementations of tensor operators, such as matrix multiplication and high dimensional convolution, are key enablers of effective deep learning systems. However, existing systems rely on manually optimized libraries such as cuDNN where only a narrow range of server class GPUs are well-supported. The reliance on hardware-specific operator libraries limits the applicability of high-level graph optimizations and incurs significant engineering costs when deploying to new hardware targets. We use learning to remove this engineering burden. We learn domain-specific statistical cost models to guide the search of tensor operator implementations over billions of possible program variants. We further accelerate the search by effective model transfer across workloads. Experimental results show that our framework delivers performance competitive with state-of-the-art hand-tuned libraries for low-power CPU, mobile GPU, and server-class GPU.
A number of applications involve sequential arrival of users, and require showing each user an ordering of items. A prime example (which forms the focus of this paper) is the bidding process in conference peer review where reviewers enter the system sequentially, each reviewer needs to be shown the list of submitted papers, and the reviewer then bids to review some papers. The order of the papers shown has a significant impact on the bids due to primacy effects. In deciding on the ordering of papers to show, there are two competing goals: (i) obtaining sufficiently many bids for each paper, and (ii) satisfying reviewers by showing them relevant items. In this paper, we begin by developing a framework to study this problem in a principled manner. We present an algorithm called SUPER*, inspired by the A* algorithm, for this goal. Theoretically, we show a local optimality guarantee of our algorithm and prove that popular baselines are considerably suboptimal. Moreover, under a community model for the similarities, we prove that SUPER* is near-optimal whereas the popular baselines are considerably suboptimal. In experiments on real data from ICLR 2018 and synthetic data, we find that SUPER* considerably outperforms baselines deployed in existing systems, consistently reducing the number of papers with fewer than requisite bids by 50-75% or more, and is also robust to various real world complexities.
173 - Shengcai Liu , Ke Tang , Xin Yao 2020
The Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows (VRPSPDTW) has attracted much research interest in the last decade, due to its wide application in modern logistics. Since VRPSPDTW is NP-hard and exact methods are only applicable to small-scale instances, heuristics and meta-heuristics are commonly adopted. In this paper we propose a novel Memetic Algorithm with efficient local search and extended neighborhood, dubbed MATE, to solve this problem. Compared to existing algorithms, the advantages of MATE lie in two aspects. First, it is capable of more effectively exploring the search space, due to its novel initialization procedure, crossover and large-step-size operators. Second, it is also more efficient in local exploitation, due to its sophisticated constant-time-complexity move evaluation mechanism. Experimental results on public benchmarks show that MATE outperforms all the state-of-the-art algorithms, and notably, finds new best-known solutions on 12 instances (65 instances in total). Moreover, a comprehensive ablation study is also conducted to show the effectiveness of the novel components integrated in MATE. Finally, a new benchmark of large-scale instances, derived from a real-world application of the JD logistics, is introduced, which can serve as a new and more challenging test set for future research.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا