No Arabic abstract
At any epoch, particle physics must be open to completely unexpected discoveries, and that is reason enough to extend the reach of searches for ultra-high energy (UHE) photons. The observation of a population of photons with energies $E gtrsim 100$ EeV would for example imply the existence of either a completely new physical phenomena, or particle acceleration mechanisms heretofore never seen or imagined. But as we outline in this Letter of Interest, there are also good arguments for super-heavy dark matter (SHDM) in a parameter range such that it could be discovered via its decays to, in particular, UHE photons. Only ultra-high energy cosmic ray observatories have capabilities to detect UHE photons. We first investigate how current and future observations can probe and constrain SHDM models in important directions, and then outline some of the scenarios that motivate such searches. We also discuss connections between constraints on SHDM and on the parameter values of cosmological models.
Interest in light dark matter candidates has recently increased in the literature; some of these works consider the role of additional neutrinos, either active or sterile. Furthermore, extragalactic neutrinos have been detected with energies higher than have ever been reported before. This opens a new window of opportunities to the study of neutrino properties that were unreachable up to now. We investigate how an interaction potential between neutrinos and dark matter might induce a resonant enhancement in the oscillation probability, an effect that may be tested with future neutrino data.
We employ data from the recently observed high-energy neutrino events at the IceCube Neutrino Observatory to constrain interactions between the dark matter (DM) in the Milky Way and the neutrino sector. We construct an extended un-binned likelihood in order to explore the parameter space of allowed interactions. We present results in the specific case of a scalar DM candidate interacting via a scalar mediator, and show that due to the energy dependence of the interaction cross section, this approach can constrain the coupling more strongly than traditional cosmological probes for some regions of the parameter space.
If the present dark matter in the Universe annihilates into Standard Model particles, it must contribute to the gamma ray fluxes detected on the Earth. The magnitude of such contribution depends on the particular dark matter candidate, but certain features of the produced spectra may be analyzed in a rather model-independent fashion. In this communication we briefly revise the complete photon spectra coming from WIMP annihilation into Standard Model particle-antiparticle pairs obtained by extensive Monte Carlo simulations and consequent fitting functions presented by Dombriz et al. in a wide range of WIMP masses. In order to illustrate the usefulness of these fitting functions, we mention how these results may be applied to the so-called brane-world theories whose fluctuations, the branons, behave as WIMPs and therefore may spontaneously annihilate in SM particles. The subsequent $gamma$-rays signal in the framework of dark matter indirect searches from Milky Way dSphs and Galactic Center may provide first evidences for this scenario.
The cosmological applications of atomic clocks so far have been limited to searches of the uniform-in-time drift of fundamental constants. In this paper, we point out that a transient in time change of fundamental constants can be induced by dark matter objects that have large spatial extent, and are built from light non-Standard Model fields. The stability of this type of dark matter can be dictated by the topological reasons. We point out that correlated networks of atomic clocks, some of them already in existence, can be used as a powerful tool to search for the topological defect dark matter, thus providing another important fundamental physics application to the ever-improving accuracy of atomic clocks. During the encounter with a topological defect, as it sweeps through the network, initially synchronized clocks will become desynchronized. Time discrepancies between spatially-separated clocks are expected to exhibit a distinct signature, encoding defects space structure and its interaction strength with the Standard Model fields.
Self-interactions within the dark sector could clump dark matter into heavy composite states with low number density, leading to a highly suppressed event rate in existing direct detection experiments. However, the large interaction cross section between such ultra-heavy dark matter (UHDM) and standard model matter results in a distinctive and compelling signature: long, straight damage tracks as they pass through and scatter with matter. In this work, we propose using geologically old quartz samples as large-exposure detectors for UHDM. We describe a high-resolution readout method based on electron microscopy, characterize the most favorable geological samples for this approach, and study its reach in a simple model of the dark sector. The advantage of this search strategy is two-fold: the age of geological quartz compensates for the low number density of UHDMs, and the distinct geometry of the damage track serves as a high-fidelity background rejection tool.