Majority dynamics on sparse random graphs


Abstract in English

Majority dynamics on a graph $G$ is a deterministic process such that every vertex updates its $pm 1$-assignment according to the majority assignment on its neighbor simultaneously at each step. Benjamini, Chan, ODonnel, Tamuz and Tan conjectured that, in the ErdH{o}s--Renyi random graph $G(n,p)$, the random initial $pm 1$-assignment converges to a $99%$-agreement with high probability whenever $p=omega(1/n)$. This conjecture was first confirmed for $pgeqlambda n^{-1/2}$ for a large constant $lambda$ by Fountoulakis, Kang and Makai. Although this result has been reproved recently by Tran and Vu and by Berkowitz and Devlin, it was unknown whether the conjecture holds for $p< lambda n^{-1/2}$. We break this $Omega(n^{-1/2})$-barrier by proving the conjecture for sparser random graphs $G(n,p)$, where $lambda n^{-3/5}log n leq p leq lambda n^{-1/2}$ with a large constant $lambda>0$.

Download