No Arabic abstract
In 1939 H. Weyl has introduced the so called intrinsic volumes $V_i(M^n), i=0,dots,n$, (known also as Lipschitz-Killing curvatures) for any closed smooth Riemannian manifold $M^n$. Given a Riemmanian submersion of compact smooth Riemannian manifolds $Mto B$, $B$ is connected. For $varepsilon >0$ let us define a new Riemannian metric on $M$ by multiplying the original one by $varepsilon$ along the vertical directions and keeping it the same along the (orthogonal) horizontal directions. Denote the corresponding Riemannian manifold by $M_varepsilon$. The main result says that $lim_{varepsilonto +0} V_i(M_varepsilon)=chi(Z) V_i(B)$, where $chi(Z)$ is the Euler characteristic of a fiber of the submersion. This result is consistent with more general open conjectures on convergence of intrinsic volumes formulated previously by the author.
For any closed smooth Riemannian manifold H. Weyl has defined a sequence of numbers called today intrinsic volumes. They include volume, Euler characteristic, and integral of the scalar curvature. We conjecture that absolute values of all intrinsic volumes are bounded by a constant depending only on the dimension of the manifold, upper bound on its diameter, and lower bound on the sectional curvature. Furthermore we conjecture that intrinsic volumes can be defined for some (so called smoothable) Alexandrov spaces with curvature bounded below and state few of the expected properties of them, particularly the behavior under the Gromov-Hausdorff limits. We suggest conjectural compactifications of the space of smooth closed connected Riemannian manifolds with given upper bounds on dimension and diameter and a lower bound on sectional curvature to which the intrinsic volumes extend by continuity. We discuss also known cases of some of these conjectures.
We describe all affine maps from a Riemannian manifold to a metric space and all possible image spaces.
In this paper we prove the existence of isoperimetric regions of any volume in Riemannian manifolds with Ricci bounded below and with a mild assumption at infinity, that is Gromov-Hausdorff asymptoticity to simply connected models of constant sectional curvature. The previous result is a consequence of a general structure theorem for perimeter-minimizing sequences of sets of fixed volume on noncollapsed Riemannian manifolds with a lower bound on the Ricci curvature. We show that, without assuming any further hypotheses on the asymptotic geometry, all the mass and the perimeter lost at infinity, if any, are recovered by at most countably many isoperimetric regions sitting in some Gromov-Hausdorff limits at infinity. The Gromov-Hausdorff asymptotic analysis conducted allows us to provide, in low dimensions, a result of nonexistence of isoperimetric regions in Cartan-Hadamard manifolds that are Gromov-Hausdorff asymptotic to the Euclidean space. While studying the isoperimetric problem in the smooth setting, the nonsmooth geometry naturally emerges, and thus our treatment combines techniques from both the theories.
We generalize valuations on polyhedral cones to valuations on fans. For fans induced by hyperplane arrangements, we show a correspondence between rotation-invariant valuations and deletion-restriction invariants. In particular, we define a characteristic polynomial for fans in terms of spherical intrinsic volumes and show that it coincides with the usual characteristic polynomial in the case of hyperplane arrangements. This gives a simple deletion-restriction proof of a result of Klivans-Swartz. The metric projection of a cone is a piecewise-linear map, whose underlying fan prompts a generalization of spherical intrinsic volumes to indicator functions. We show that these intrinsic indicators yield valuations that separate polyhedral cones. Applied to hyperplane arrangements, this generalizes a result of Kabluchko on projection volumes.
A {em 2-Riemannian manifold} is a differentiable manifold exhibiting a 2-inner product on each tangent space. We first study lower dimensional 2-Riemannian manifolds by giving necessary and sufficient conditions for flatness. Afterward we associate to each 2-Riemannian manifold a unique torsion free compatible pseudoconnection. Using it we define a curvature for 2-Riemannian manifolds and study its properties. We also prove that 2-Riemannian pseudoconnections do not have Koszul derivatives. Moreover, we define stationary vector field with respect to a 2-Riemannian metric and prove that the stationary vector fields in $mathbb{R}^2$ with respect to the 2-Riemannian metric induced by the Euclidean product are the divergence free ones.