Do you want to publish a course? Click here

Out-of-Vocabulary Entities in Link Prediction

46   0   0.0 ( 0 )
 Added by Caglar Demir
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Knowledge graph embedding techniques are key to making knowledge graphs amenable to the plethora of machine learning approaches based on vector representations. Link prediction is often used as a proxy to evaluate the quality of these embeddings. Given that the creation of benchmarks for link prediction is a time-consuming endeavor, most work on the subject matter uses only a few benchmarks. As benchmarks are crucial for the fair comparison of algorithms, ensuring their quality is tantamount to providing a solid ground for developing better solutions to link prediction and ipso facto embedding knowledge graphs. First studies of benchmarks pointed to limitations pertaining to information leaking from the development to the test fragments of some benchmark datasets. We spotted a further common limitation of three of the benchmarks commonly used for evaluating link prediction approaches: out-of-vocabulary entities in the test and validation sets. We provide an implementation of an approach for spotting and removing such entities and provide correct



rate research

Read More

Link prediction for knowledge graphs aims to predict missing connections between entities. Prevailing methods are limited to a transductive setting and hard to process unseen entities. The recent proposed subgraph-based models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet. However, these methods require abundant known facts of training triplets and perform poorly on relationships that only have a few triplets. In this paper, we propose Meta-iKG, a novel subgraph-based meta-learner for few-shot inductive relation reasoning. Meta-iKG utilizes local subgraphs to transfer subgraph-specific information and learn transferable patterns faster via meta gradients. In this way, we find the model can quickly adapt to few-shot relationships using only a handful of known facts with inductive settings. Moreover, we introduce a large-shot relation update procedure to traditional meta-learning to ensure that our model can generalize well both on few-shot and large-shot relations. We evaluate Meta-iKG on inductive benchmarks sampled from NELL and Freebase, and the results show that Meta-iKG outperforms the current state-of-the-art methods both in few-shot scenarios and standard inductive settings.
Link prediction is a paradigmatic problem in network science with a variety of applications. In latent space network models this problem boils down to ranking pairs of nodes in the order of increasing latent distances between them. The network model with hyperbolic latent spaces has a number of attractive properties suggesting it must be a powerful tool to predict links, but the past work in this direction reported mixed results. Here we perform systematic investigation of the utility of latent hyperbolic geometry for link prediction in networks. We first show that some measures of link prediction accuracy are extremely sensitive with respect to inaccuracies in the inference of latent hyperbolic coordinates of nodes, so that we develop a new coordinate inference method that maximizes the accuracy of such inference. Applying this method to synthetic and real networks, we then find that while there exists a multitude of competitive methods to predict obvious easy-to-predict links, among which hyperbolic link prediction is rarely the best but often competitive, it is the best, often by far, when the task is to predict less obvious missing links that are really hard to predict. These links include missing links in incomplete networks with large fractions of missing links, missing links between nodes that do not have any common neighbors, and missing links between dissimilar nodes at large latent distances. Overall these results suggest that the harder a specific link prediction task is, the more seriously one should consider using hyperbolic geometry.
Dealing with previously unseen slots is a challenging problem in a real-world multi-domain dialogue state tracking task. Other approaches rely on predefined mappings to generate candidate slot keys, as well as their associated values. This, however, may fail when the key, the value, or both, are not seen during training. To address this problem we introduce a neural network that leverages external knowledge bases (KBs) to better classify out-of-vocabulary slot keys and values. This network projects the slot into an attribute space derived from the KB, and, by leveraging similarities in this space, we propose candidate slot keys and values to the dialogue state tracker. We provide extensive experiments that demonstrate that our stratagem can improve upon a previous approach, which relies on predefined candidate mappings. In particular, we evaluate this approach by training a state-of-the-art model with candidates generated from our network, and obtained relative increases of 57.7% and 82.7% in F1 score and accuracy, respectively, for the aforementioned model, when compared to the current candidate generation strategy.
Inspired by traditional link prediction and to solve the problem of recommending friends in social networks, we introduce the personalized link prediction in this paper, in which each individual will get equal number of diversiform predictions. While the performances of many classical algorithms are not satisfactory under this framework, thus new algorithms are in urgent need. Motivated by previous researches in other fields, we generalize heat conduction process to the framework of personalized link prediction and find that this method outperforms many classical similarity-based algorithms, especially in the performance of diversity. In addition, we demonstrate that adding one ground node who is supposed to connect all the nodes in the system will greatly benefit the performance of heat conduction. Finally, better hybrid algorithms composed of local random walk and heat conduction have been proposed. Numerical results show that the hybrid algorithms can outperform other algorithms simultaneously in all four adopted metrics: AUC, precision, recall and hamming distance. In a word, this work may shed some light on the in-depth understanding of the effect of physical processes in personalized link prediction.
Many real world, complex phenomena have underlying structures of evolving networks where nodes and links are added and removed over time. A central scientific challenge is the description and explanation of network dynamics, with a key test being the prediction of short and long term changes. For the problem of short-term link prediction, existing methods attempt to determine neighborhood metrics that correlate with the appearance of a link in the next observation period. Recent work has suggested that the incorporation of topological features and node attributes can improve link prediction. We provide an approach to predicting future links by applying the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to optimize weights which are used in a linear combination of sixteen neighborhood and node similarity indices. We examine a large dynamic social network with over $10^6$ nodes (Twitter reciprocal reply networks), both as a test of our general method and as a problem of scientific interest in itself. Our method exhibits fast convergence and high levels of precision for the top twenty predicted links. Based on our findings, we suggest possible factors which may be driving the evolution of Twitter reciprocal reply networks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا