No Arabic abstract
Empirical Dynamic Modeling (EDM) is a state-of-the-art non-linear time-series analysis framework. Despite its wide applicability, EDM was not scalable to large datasets due to its expensive computational cost. To overcome this obstacle, researchers have attempted and succeeded in accelerating EDM from both algorithmic and implementational aspects. In previous work, we developed a massively parallel implementation of EDM targeting HPC systems (mpEDM). However, mpEDM maintains different backends for different architectures. This design becomes a burden in the increasingly diversifying HPC systems, when porting to new hardware. In this paper, we design and develop a performance-portable implementation of EDM based on the Kokkos performance portability framework (kEDM), which runs on both CPUs and GPUs while based on a single codebase. Furthermore, we optimize individual kernels specifically for EDM computation, and use real-world datasets to demonstrate up to $5.5times$ speedup compared to mpEDM in convergent cross mapping computation.
Searching for geometric objects that are close in space is a fundamental component of many applications. The performance of search algorithms comes to the forefront as the size of a problem increases both in terms of total object count as well as in the total number of search queries performed. Scientific applications requiring modern leadership-class supercomputers also pose an additional requirement of performance portability, i.e. being able to efficiently utilize a variety of hardware architectures. In this paper, we introduce a new open-source C++ search library, ArborX, which we have designed for modern supercomputing architectures. We examine scalable search algorithms with a focus on performance, including a highly efficient parallel bounding volume hierarchy implementation, and propose a flexible interface making it easy to integrate with existing applications. We demonstrate the performance portability of ArborX on multi-core CPUs and GPUs, and compare it to the state-of-the-art libraries such as Boost.Geometry.Index and nanoflann.
Containers are an emerging technology that hold promise for improving productivity and code portability in scientific computing. We examine Linux container technology for the distribution of a non-trivial scientific computing software stack and its execution on a spectrum of platforms from laptop computers through to high performance computing (HPC) systems. We show on a workstation and a leadership-class HPC system that when deployed appropriately there are no performance penalties running scientific programs inside containers. For Python code run on large parallel computers, the run time is reduced inside a container due to faster library imports. The software distribution approach and data that we present will help developers and users decide on whether container technology is appropriate for them. We also provide guidance for the vendors of HPC systems that rely on proprietary libraries for performance on what they can do to make containers work seamlessly and without performance penalty.
We propose two novel techniques for overcoming load-imbalance encountered when implementing so-called look-ahead mechanisms in relevant dense matrix factorizations for the solution of linear systems. Both techniques target the scenario where two thread teams are created/activated during the factorization, with each team in charge of performing an independent task/branch of execution. The first technique promotes worker sharing (WS) between the two tasks, allowing the threads of the task that completes first to be reallocated for use by the costlier task. The second technique allows a fast task to alert the slower task of completion, enforcing the early termination (ET) of the second task, and a smooth transition of the factorization procedure into the next iteration. The two mechanisms are instantiated via a new malleable thread-level implementation of the Basic Linear Algebra Subprograms (BLAS), and their benefits are illustrated via an implementation of the LU factorization with partial pivoting enhanced with look-ahead. Concretely, our experimental results on a six core Intel-Xeon processor show the benefits of combining WS+ET, reporting competitive performance in comparison with a task-parallel runtime-based solution.
Tile low rank representations of dense matrices partition them into blocks of roughly uniform size, where each off-diagonal tile is compressed and stored as its own low rank factorization. They offer an attractive representation for many data-sparse dense operators that appear in practical applications, where substantial compression and a much smaller memory footprint can be achieved. TLR matrices are a compromise between the simplicity of a regular perfectly-strided data structure and the optimal complexity of the unbalanced trees of hierarchically low rank matrices, and provide a convenient performance-tuning parameter through their tile size that can be proportioned to take into account the cache size where the tiles reside in the memory hierarchy. There are currently no high-performance algorithms that can generate Cholesky and $LDL^T$ factorizations, particularly on GPUs. The difficulties in achieving high performance when factoring TLR matrices come from the expensive compression operations that must be performed during the factorization process and the adaptive rank distribution of the tiles that causes an irregular work pattern for the processing cores. In this work, we develop a dynamic batching operation and combine it with batched adaptive randomized approximations to achieve high performance both on GPUs and CPUs. Our implementation attains over 1.2 TFLOP/s in double precision on the V100 GPU, and is limited by the performance of batched GEMM operations. The Cholesky factorization of covariance matrix of size $N = 131K$ arising in spatial statistics can be factored to an accuracy $epsilon=10^{-2}$ in just a few seconds. We believe the proposed GEMM-centric algorithm allows it to be readily ported to newer hardware such as the tensor cores that are optimized for small GEMM operations.
Stencil kernels dominate a range of scientific applications, including seismic and medical imaging, image processing, and neural networks. Temporal blocking is a performance optimization that aims to reduce the required memory bandwidth of stencil computations by re-using data from the cache for multiple time steps. It has already been shown to be beneficial for this class of algorithms. However, applying temporal blocking to practical applications stencils remains challenging. These computations often consist of sparsely located operators not aligned with the computational grid (off-the-grid). Our work is motivated by modeling problems in which source injections result in wavefields that must then be measured at receivers by interpolation from the grided wavefield. The resulting data dependencies make the adoption of temporal blocking much more challenging. We propose a methodology to inspect these data dependencies and reorder the computation, leading to performance gains in stencil codes where temporal blocking has not been applicable. We implement this novel scheme in the Devito domain-specific compiler toolchain. Devito implements a domain-specific language embedded in Python to generate optimized partial differential equation solvers using the finite-difference method from high-level symbolic problem definitions. We evaluate our scheme using isotropic acoustic, anisotropic acoustic, and isotropic elastic wave propagators of industrial significance. After auto-tuning, performance evaluation shows that this enables substantial performance improvement through temporal blocking over highly-optimized vectorized spatially-blocked code of up to 1.6x.