Do you want to publish a course? Click here

On Dasguptas hierarchical clustering objective and its relation to other graph parameters

50   0   0.0 ( 0 )
 Added by Svein H{\\o}gemo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The minimum height of vertex and edge partition trees are well-studied graph parameters known as, for instance, vertex and edge ranking number. While they are NP-hard to determine in general, linear-time algorithms exist for trees. Motivated by a correspondence with Dasguptas objective for hierarchical clustering we consider the total rather than maximum depth of vertices as an alternative objective for minimization. For vertex partition trees this leads to a new parameter with a natural interpretation as a measure of robustness against vertex removal. As tools for the study of this family of parameters we show that they have similar recursive expressions and prove a binary tree rotation lemma. The new parameter is related to trivially perfect graph completion and therefore intractable like the other three are known to be. We give polynomial-time algorithms for both total-depth variants on caterpillars and on trees with a bounded number of leaf neighbors. For general trees, we obtain a 2-approximation algorithm.



rate research

Read More

Recently, Hierarchical Clustering (HC) has been considered through the lens of optimization. In particular, two maximization objectives have been defined. Moseley and Wang defined the emph{Revenue} objective to handle similarity information given by a weighted graph on the data points (w.l.o.g., $[0,1]$ weights), while Cohen-Addad et al. defined the emph{Dissimilarity} objective to handle dissimilarity information. In this paper, we prove structural lemmas for both objectives allowing us to convert any HC tree to a tree with constant number of internal nodes while incurring an arbitrarily small loss in each objective. Although the best-known approximations are 0.585 and 0.667 respectively, using our lemmas we obtain approximations arbitrarily close to 1, if not all weights are small (i.e., there exist constants $epsilon, delta$ such that the fraction of weights smaller than $delta$, is at most $1 - epsilon$); such instances encompass many metric-based similarity instances, thereby improving upon prior work. Finally, we introduce Hierarchical Correlation Clustering (HCC) to handle instances that contain similarity and dissimilarity information simultaneously. For HCC, we provide an approximation of 0.4767 and for complementary similarity/dissimilarity weights (analogous to $+/-$ correlation clustering), we again present nearly-optimal approximations.
We study the design of local algorithms for massive graphs. A local algorithm is one that finds a solution containing or near a given vertex without looking at the whole graph. We present a local clustering algorithm. Our algorithm finds a good cluster--a subset of vertices whose internal connections are significantly richer than its external connections--near a given vertex. The running time of our algorithm, when it finds a non-empty local cluster, is nearly linear in the size of the cluster it outputs. Our clustering algorithm could be a useful primitive for handling massive graphs, such as social networks and web-graphs. As an application of this clustering algorithm, we present a partitioning algorithm that finds an approximate sparsest cut with nearly optimal balance. Our algorithm takes time nearly linear in the number edges of the graph. Using the partitioning algorithm of this paper, we have designed a nearly-linear time algorithm for constructing spectral sparsifiers of graphs, which we in turn use in a nearly-linear time algorithm for solving linear systems in symmetric, diagonally-dominant matrices. The linear system solver also leads to a nearly linear-time algorithm for approximating the second-smallest eigenvalue and corresponding eigenvector of the Laplacian matrix of a graph. These other results are presented in two companion papers.
Recent works on Hierarchical Clustering (HC), a well-studied problem in exploratory data analysis, have focused on optimizing various objective functions for this problem under arbitrary similarity measures. In this paper we take the first step and give novel scalable algorithms for this problem tailored to Euclidean data in R^d and under vector-based similarity measures, a prevalent model in several typical machine learning applications. We focus primarily on the popular Gaussian kernel and other related measures, presenting our results through the lens of the objective introduced recently by Moseley and Wang [2017]. We show that the approximation factor in Moseley and Wang [2017] can be improved for Euclidean data. We further demonstrate both theoretically and experimentally that our algorithms scale to very high dimension d, while outperforming average-linkage and showing competitive results against other less scalable approaches.
Hierarchical clustering is a popular unsupervised data analysis method. For many real-world applications, we would like to exploit prior information about the data that imposes constraints on the clustering hierarchy, and is not captured by the set of features available to the algorithm. This gives rise to the problem of hierarchical clustering with structural constraints. Structural constraints pose major challenges for bottom-up approaches like average/single linkage and even though they can be naturally incorporated into top-down divisive algorithms, no formal guarantees exist on the quality of their output. In this paper, we provide provable approximation guarantees for two simple top-down algorithms, using a recently introduced optimization viewpoint of hierarchical clustering with pairwise similarity information [Dasgupta, 2016]. We show how to find good solutions even in the presence of conflicting prior information, by formulating a constraint-based regularization of the objective. We further explore a variation of this objective for dissimilarity information [Cohen-Addad et al., 2018] and improve upon current techniques. Finally, we demonstrate our approach on a real dataset for the taxonomy application.
Hierarchical Clustering (HC) is a widely studied problem in exploratory data analysis, usually tackled by simple agglomerative procedures like average-linkage, single-linkage or complete-linkage. In this paper we focus on two objectives, introduced recently to give insight into the performance of average-linkage clustering: a similarity based HC objective proposed by [Moseley and Wang, 2017] and a dissimilarity based HC objective proposed by [Cohen-Addad et al., 2018]. In both cases, we present tight counterexamples showing that average-linkage cannot obtain better than 1/3 and 2/3 approximations respectively (in the worst-case), settling an open question raised in [Moseley and Wang, 2017]. This matches the approximation ratio of a random solution, raising a natural question: can we beat average-linkage for these objectives? We answer this in the affirmative, giving two new algorithms based on semidefinite programming with provably better guarantees.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا