Do you want to publish a course? Click here

Stacked CMB lensing and ISW signals around superstructures in the DESI Legacy Survey

98   0   0.0 ( 0 )
 Added by Qianjun Hang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The imprints of large-scale structures on the Cosmic Microwave Background can be studied via the CMB lensing and Integrated Sachs-Wolfe (ISW) signals. In particular, the stacked ISW signal around supervoids has been claimed in several works to be anomalously high. In this study, we find cluster and void superstructures using four tomographic redshift bins with $0<z<0.8$ from the DESI Legacy Survey, and measure the stacked CMB lensing and ISW signals around them. To compare our measurements with $Lambda$CDM model predictions, we construct a mock catalogue with matched galaxy number density and bias, and apply the same photo-$z$ uncertainty as the data. The consistency between the mock and data is verified via the stacked galaxy density profiles around the superstructures and their quantity. The corresponding lensing convergence and ISW maps are then constructed and compared. The stacked lensing signal agrees with data well except at the highest redshift bin in density peaks, where the mock prediction is significantly higher, by approximately a factor 1.3. The stacked ISW signal is generally consistent with the mock prediction. We do not obtain a significant signal from voids, $A_{rm ISW}=-0.10pm0.69$, and the signal from clusters, $A_{rm ISW}=1.52pm0.72$, is at best weakly detected. However, these results are strongly inconsistent with previous claims of ISW signals at many times the level of the $Lambda$CDM prediction. We discuss the comparison of our results with past work in this area, and investigate possible explanations for this discrepancy.



rate research

Read More

We use data from the DESI Legacy Survey imaging to probe the galaxy density field in tomographic slices covering the redshift range $0<z<0.8$. After careful consideration of completeness corrections and galactic cuts, we obtain a sample of $4.9times 10^7$ galaxies covering 17 739 deg$^2$. We derive photometric redshifts with precision $sigma_z/(1+z)=0.012 - 0.015$, and compare with alternative estimates. Cross-correlation of the tomographic galaxy maps with Planck maps of CMB temperature and lensing convergence probe the growth of structure since $z=0.8$. The signals are compared with a fiducial Planck $Lambda$CDM model, and require an overall scaling in amplitude of $A_kappa=0.901pm 0.026$ for the lensing cross-correlation and $A_{rm ISW} = 0.984 pm 0.349$ for the temperature cross-correlation, interpreted as the Integrated Sachs-Wolfe effect. The ISW amplitude is consistent with the fiducial $Lambda$CDM prediction, but lies significantly below the prediction of the AvERA model of Racz et al. (2017), which has been proposed as an alternative explanation for cosmic acceleration. Within $Lambda$CDM, our low amplitude for the lensing cross-correlation requires a reduction either in fluctuation normalization or in matter density compared to the Planck results, so that $Omega_m^{0.78}sigma_8=0.297pm 0.009$. In combination with the total amplitude of CMB lensing, this favours a shift mainly in density: $Omega_m=0.274pm0.024$. We discuss the consistency of this figure with alternative evidence. A conservative compromise between lensing and primary CMB constraints would require $Omega_m=0.296pm0.006$, where the 95% confidence regions of both probes overlap.
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in orderto characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, $Gmull 10^{-7}$,, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
Any Dark Energy (DE) or Modified Gravity (MG) model that deviates from a cosmological constant requires a consistent treatment of its perturbations, which can be described in terms of an effective entropy perturbation and an anisotropic stress. We have considered a recently proposed generic parameterisation of DE/MG perturbations and compared it to data from the Planck satellite and six galaxy catalogues, including temperature-galaxy (Tg), CMB lensing-galaxy and galaxy-galaxy (gg) correlations. Combining these observables of structure formation with tests of the background expansion allows us to investigate the properties of DE/MG both at the background and the perturbative level. Our constraints on DE/MG are mostly in agreement with the cosmological constant paradigm, while we also find that the constraint on the equation of state w (assumed to be constant) depends on the model assumed for the perturbation evolution. We obtain $w=-0.92^{+0.20}_{-0.16}$ (95% CL; CMB+gg+Tg) in the entropy perturbation scenario; in the anisotropic stress case the result is $w=-0.86^{+0.17}_{-0.16}$. Including the lensing correlations shifts the results towards higher values of w. If we include a prior on the expansion history from recent Baryon Acoustic Oscillations (BAO) measurements, we find that the constraints tighten closely around $w=-1$, making it impossible to measure any DE/MG perturbation evolution parameters. If, however, upcoming observations from surveys like DES, Euclid or LSST show indications for a deviation from a cosmological constant, our formalism will be a useful tool towards model selection in the dark sector.
104 - Zeyang Sun 2021
We measure the cross-correlation between galaxy groups constructed from DESI Legacy Imaging Survey DR8 and Planck CMB lensing, over overlapping sky area of 16876 $rm deg^2$. The detections are significant and consistent with the expected signal of the large scale structure of the universe, over group samples of various redshift, mass and richness $N_{rm g}$ and over various scale cuts. The overall S/N is 39 for a conservative sample with $N_{rm g}geq 5$, and increases to $48$ for the sample with $N_{rm g}geq 2$. Adopting the Planck 2018 cosmology, we constrain the density bias of groups with $N_{rm g}geq 5$ as $b_{rm g}=1.31pm 0.10$, $2.22pm 0.10$, $3.52pm 0.20$ at $0.1<zleq 0.33$, $0.33<zleq 0.67$, $0.67<zleq1$ respectively. The value-added group catalog allows us to detect the dependence of bias on group mass with high significance. It also allows us to compare the measured bias with the theoretically predicted one using the estimated group mass. We find excellent agreement for the two high redshift bins. However, it is lower than the theory by $sim 3sigma$ for the lowest redshift bin. Another interesting finding is the significant impact of the thermal Sunyaev Zeldovich (tSZ). It contaminates the galaxy group-CMB lensing cross-correlation at $sim 30%$ level, and must be deprojected first in CMB lensing reconstruction.
Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and test theories of modified gravity. We detect a cross-correlation between DESI-like luminous red galaxies (LRGs) selected from DECaLS imaging and CMB lensing maps reconstructed with the Planck satellite at a significance of $S/N = 27.2$ over scales $ell_{rm min} = 30$, $ell_{rm max} = 1000$. To correct for magnification bias, we determine the slope of the LRG cumulative magnitude function at the faint limit as $s = 0.999 pm 0.015$, and find corresponding corrections on the order of a few percent for $C^{kappa g}_{ell}, C^{gg}_{ell}$ across the scales of interest. We fit the large-scale galaxy bias at the effective redshift of the cross-correlation $z_{rm eff} approx 0.68$ using two different bias evolution agnostic models: a HaloFit times linear bias model where the bias evolution is folded into the clustering-based estimation of the redshift kernel, and a Lagrangian perturbation theory model of the clustering evaluated at $z_{rm eff}$. We also determine the error on the bias from uncertainty in the redshift distribution; within this error, the two methods show excellent agreement with each other and with DESI survey expectations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا