Multipole polaron in the devils staircase of CeSb


Abstract in English

Rare earth intermetallic compounds have been fascinating scientists due to rich phenomena induced by the interplay between localized $f$-orbitals and conduction electrons. However, since the energy scale of the crystal-electric-field (CEF) splitting, which defines $f$-orbitals, is very small only in a few meV, the nature of mobile electrons accompanied by CEF-excitations has not been unveiled so far. It thus leaves these systems as frontiers for discovering exotic quasiparticles not yet captured in condensed matter physics. Here, we examined very low-energy electronic structures of CeSb going through the anomalous magnetostructural transitions below the N{{e}}el temperature ($T_{rm{N}}$) $sim$17 K, called devils staircase, by a combination of laser angle-resolved photoemission, Raman and neutron scattering spectroscopies. We found a new type of electron-boson coupling between the mobile electrons and quadrupole CEF-excitations of the 4$f$-orbitals, which renormalizes the Sb 5$p$ band prominently, yielding a remarkable kink at very low-energy ($sim$7 meV). This coupling strength is exceedingly strong and exhibits anomalous step-like enhancement during the devils staircase transition, unveiling a new type of quasiparticle, named multipole polaron, that is a mobile electron largely dressed with a cloud of the quadrupole CEF-polarization.

Download