Unified description of cuprate superconductors using four-band $d$-$p$ model


Abstract in English

In the 35 years since the discovery of cuprate superconductors, we have not yet reached a unified understanding of their properties, including their material dependence of the superconducting transition temperature $T_{text{c}}$. The preceding theoretical and experimental studies have provided an overall picture of the phase diagram, and some important parameters for the $T_{text{c}}$, such as the contribution of the Cu $d_{z^2}$ orbital to the Fermi surface and the site-energy difference $Delta_{dp}$ between the Cu $d_{x^2-y^2}$ and O $p$ orbitals. However, they are somewhat empirical and limited in scope, always including exceptions, and do not provide a comprehensive view of the series of cuprates. Here we propose a four-band $d$-$p$ model as a minimal model to study material dependence in cuprates. Using the variational Monte Carlo method, we theoretically investigate the phase diagram for the La$_2$CuO$_4$ and HgBa$_2$CuO$_4$ systems and the correlation between the key parameters and the superconductivity. Our results comprehensively account for the empirical correlation between $T_{text{c}}$ and model parameters, and thus can provide a guideline for new material design. We also show that the effect of the nearest-neighbor $d$-$d$ Coulomb interaction $V_{dd}$ is actually quite important for the stability of superconductivity and phase competition.

Download