No Arabic abstract
We present Ly$alpha$ and ultraviolet-continuum (UV) luminosity functions (LFs) of galaxies and active galactic nuclei (AGN) at $z=2.0-3.5$ determined by the un-targetted optical spectroscopic survey of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). We combine deep Subaru imaging with HETDEX spectra resulting in $11.4$ deg$^2$ of fiber-spectra sky coverage, obtaining $18320$ galaxies spectroscopically identified with Ly$alpha$ emission, $2126$ of which host type 1 AGN showing broad (FWHM$~>1000$ km s$^{-1}$) Ly$alpha$ emission lines. We derive the Ly$alpha$ (UV) LF over 2 orders of magnitude covering bright galaxies and AGN in $log L_mathrm{Lyalpha}/mathrm{[erg~s^{-1}]}=43.3-45.5$ ($-27<M_mathrm{UV}<-20$) by the $1/V_mathrm{max}$ estimator. Our results reveal the bright-end hump of the Ly$alpha$ LF is composed of type 1 AGN. In conjunction with previous spectroscopic results at the faint end, we measure a slope of the best-fit Schechter function to be $alpha_mathrm{Sch}=-1.70^{+0.13}_{-0.14}$, which indicates $alpha_mathrm{Sch}$ steepens from $z=2-3$ towards high redshift. Our UV LF agrees well with previous AGN UV LFs, and extends to faint-AGN and bright-galaxy regimes. The number fraction of Ly$alpha$-emitting objects ($X_mathrm{LAE}$) increases from $M_mathrm{UV}^*sim-21$ to bright magnitude due to the contribution of type 1 AGN, while previous studies claim that $X_mathrm{Lyalpha}$ decreases from faint magnitude to $M_mathrm{UV}^*$, suggesting a valley in the $X_mathrm{Lyalpha}-$magnitude relation at $M_mathrm{UV}^*$. Comparing our UV LF of type 1 AGN at $z=2-3$ with those at $z=0$, we find that the number density of faint ($M_mathrm{UV}>-21$) type 1 AGN increases from $zsim2$ to $zsim0$ as opposed to the evolution of bright ($M_mathrm{UV}<-21$) type 1 AGN, suggesting the AGN downsizing in the rest-frame UV luminosity.
Galaxies at high redshift with a strong Ly-Alpha emission line trace massive star formation in the absence of dust, and can therefore be regarded as a prime signature of the first major starburst in galaxies. We report results of the Ly-Alpha search within the Calar Alto Deep Imaging Survey (CADIS). With imaging Fabry-Perot interferometer CADIS can detect emission lines in three waveband windows free of night-sky emission lines at 700nm, 820nm, and 920nm. The typical flux detection limit for Ly-Alpha emission redshifted into these windows, Flim > 3X10^(-20) Wm^(-2), corresponds to (unobscured) star formation rates of >10Msun/yr at z=6. Candidate Ly-Alpha-emitting galaxies are selected from the total emission line sample, which contains more than 97% of objects at z<1.2, by the absence of flux below the Lyman limit (B-band dropouts), and the non-detection of secondary emission lines in narrow band filters. We have detected 5 bright Ly-Alpha-emitting galaxy candidates at z ~ 4.8, and 11 candidates at z ~ 5.7. For two of four observed Ly-Alpha candidates, one candidate at z ~ 4.8, and the other at z ~ 5.7, the emission line detected with the Fabry-Perot has been verified spectroscopically at the VLT. When compared to Ly-Alpha surveys at z<3.5 even the upper limits set by our list of candidates show that bright Ly-Alpha galaxies are significantly rarer at z>5 than the assumption of a non-evolving population would predict. Therefore we conclude that the Ly-Alpha bright phase of primeval star formation episodes reached its peak at redshifts between 3 and 6.
We measure the Ly$alpha$ escape fraction of 935 [OIII]-emitting galaxies between $1.9 < z < 2.35$ by comparing stacked spectra from the Hubble Space Telescope/WFC3s near-IR grism to corresponding stacks from the Hobby Eberly Telescope Dark Energy Experiments Internal Data Release 2. By measuring the stacks H$beta$ to Ly$alpha$ ratios, we determine the Ly$alpha$ escape fraction as a function of stellar mass, star formation rate, internal reddening, size, and [OIII]/H$beta$ ratio. We show that the escape fraction of Ly$alpha$ correlates with a number of parameters, such as galaxy size, star formation rate, and nebular excitation. However, we also demonstrate that most of these relations are indirect, and the primary variables that control the escape of Ly$alpha$ are likely stellar mass and internal extinction. Overall, the escape of Ly$alpha$ declines from $gtrsim 18%$ in galaxies with $log M/M_{odot} lesssim 9$ to $lesssim 1%$ for systems with $log M/M_{odot} gtrsim 10$, with the samples mean escape fraction being $6.0^{+0.6%}_{-0.5%}$.
We constrain the rest-frame FUV (1546AA), NUV (2345AA) and U-band (3690AA) luminosity functions (LFs) and luminosity densities (LDs) with unprecedented precision from $zsim0.2$ to $zsim3$ (FUV, NUV) and $zsim2$ (U-band). Our sample of over 4.3 million galaxies, selected from the CFHT Large Area $U$-band Deep Survey (CLAUDS) and HyperSuprime-Cam Subaru Strategic Program (HSC-SSP) data lets us probe the very faint regime (down to $M_mathrm{FUV},M_mathrm{NUV},M_mathrm{U} simeq -15$ at low redshift) while simultaneously detecting very rare galaxies at the bright end down to comoving densities $<10^{-5}$ Mpc$^{-3}$. Our FUV and NUV LFs are well fitted by single Schechter functions, with faint-end slopes that are very stable up to $zsim2$. We confirm, but self-consistently and with much better precision than previous studies, that the LDs at all three wavelengths increase rapidly with lookback time to $zsim1$, and then much more slowly at $1<z<2$--$3$. Evolution of the FUV and NUV LFs and LDs at $z<1$ is driven almost entirely by the fading of the characteristic magnitude, $M^star_{UV}$, while at $z>1$ it is due to the evolution of both $M^star_{UV}$ and the characteristic number density $phi^star_{UV}$. In contrast, the U-band LF has an excess of faint galaxies and is fitted with a double-Schechter form; $M^star_mathrm{U}$, both $phi^star_mathrm{U}$ components, and the bright-end slope evolve throughout $0.2<z<2$, while the faint-end slope is constant over at least the measurable $0.05<z<0.6$. We present tables of our Schechter parameters and LD measurements that can be used for testing theoretical galaxy evolution models and forecasting future observations.
We present the comprehensive analyses of faint dropout galaxies up to $zsim10$ with the first full-depth data set of Abell 2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify $54$ dropouts at $zsim5-10$ in the HFF fields, and enlarge the size of $zsim9$ galaxy sample obtained to date. Although the number of highly magnified ($musim10$) galaxies is small due to the tiny survey volume of strong lensing, our study reaches the galaxies intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functions with these faint dropouts, carefully evaluating the combination of observational incompleteness and lensing effects in the image plane by intensive simulations including magnification, distortion, and multiplication of images, with the evaluations of mass model dependences. Our results confirm that the faint-end slope, $alpha$, is as steep as $-2$ at $zsim6-8$, and strengthen the evidence of the rapid decrease of UV luminosity densities, $rho_mathrm{UV}$, at $z>8$ from the large $zsim9$ sample. We examine whether the rapid $rho_mathrm{UV}$ decrease trend can reconcile with the large Thomson scattering optical depth, $tau_mathrm{e}$, measured by CMB experiments allowing a large space of free parameters such as average ionizing photon escape fraction and stellar-population dependent conversion factor. No parameter set can reproduce both the rapid $rho_mathrm{UV}$ decrease and the large $tau_mathrm{e}$. It is possible that the $rho_mathrm{UV}$ decrease moderates at $zgtrsim11$, that the free parameters significantly evolve towards high-$z$, or that there exist additional sources of reionization such as X-ray binaries and faint AGNs.
We present properties of individual and composite rest-UV spectra of continuum- and narrowband-selected star-forming galaxies (SFGs) at a redshift of 2<z<3.5 discovered by the MUSYC collaboration in the ECDF-S. Among our sample of 81 UV-bright SFGs, 59 have R<25.5, of which 32 have rest-frame equivalent widths W_{Ly{alpha}}>20 {AA}, the canonical limit to be classified as a LAE. We divide our dataset into subsamples based on properties we are able to measure for each individual galaxy: Ly{alpha} equivalent width, rest-frame UV colors, and redshift. Among our subsample of galaxies with R<25.5, those with rest-frame W_{Ly{alpha}}>20 {AA} have bluer UV continua, weaker low-ionization interstellar absorption lines, weaker C IV absorption, and stronger Si II* nebular emission than those with W_{Ly{alpha}}<20 {AA}. We measure a typical velocity offset of {Delta}v~600 km s$^{-1}$ between Ly{alpha} emission and low-ionization absorption among our subsamples. We find that the interstellar component, as opposed to the stellar component, dominates the high-ionization absorption line profiles. We find the low- and high-ionization Si ionization states have similar kinematic properties, yet the low-ionization absorption is correlated with Ly$alpha$ emission and the high-ionization absorption is not. These trends are consistent with outflowing neutral gas being in the form of neutral clouds embedded in ionized gas as previously suggested by cite{Steidel2010}. Moreover, our galaxies with bluer UV colors have stronger Ly{alpha} emission, weaker low-ionization absorption and more prominent nebular emission line profiles. Among our dataset, UV-bright galaxies with W_{Ly{alpha}}>20 {AA} exhibit weaker Ly{alpha} emission at lower redshifts, although we caution that this could be caused by spectroscopic confirmation of low Ly{alpha} equivalent width galaxies being harder at z~3 than z~2.