Do you want to publish a course? Click here

Ultrahigh-energy Gamma Rays and Gravitational Waves from Primordial Exotic Stellar Bubbles

77   0   0.0 ( 0 )
 Added by Qianhang Ding
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We put forward a novel class of exotic celestial objects that can be produced through phase transitions occurred in the primordial Universe. These objects appear as bubbles of stellar sizes and can be dominated by primordial black holes (PBHs). We report that, due to the processes of Hawking radiation and binary evolution of PBHs inside these stellar bubbles, both electromagnetic and gravitational radiations can be emitted that are featured on the gamma-ray spectra and stochastic gravitational waves (GWs). Our results reveal that, depending on the mass distribution, the exotic stellar bubbles consisting of PBHs provide not only a decent fit for the ultrahigh-energy gamma-ray spectrum reported by the recent LHAASO experiment, but also predict GW signals that are expected to be tested by the forthcoming GW surveys.



rate research

Read More

121 - Zihan Zhou , Jie Jiang , Yi-Fu Cai 2020
We present a new realization of the resonant production of primordial black holes as well as gravitational waves in a two-stage inflation model consisting of a scalar field phi with an axion-monodromy-like periodic structure in the potential that governs the first stage and another field chi with a hilltop-like potential that dominates the second stage. The parametric resonance seeded by the periodic structure at the first stage amplifies the perturbations of both fields inside the Hubble radius. While the evolution of the background trajectory experiences a turn as the oscillatory barrier height increases, the amplified perturbations of chi remain as they are and contribute to the final curvature perturbation. It turns out that the primordial power spectrum displays a significant resonant peak on small scales, which can lead to an abundant production of primordial black holes. Furthermore, gravitational waves are also generated from the resonantly enhanced field perturbations during inflation, the amplitude of which may be constrained by future gravitational wave interferometers.
168 - James B. Dent 2013
It has been shown that a cosmological background with an anisotropic stress tensor, appropriate for a free streaming thermal neutrino background, can damp primordial gravitational waves after they enter the horizon, and can thus affect the CMB B-mode polarization signature due to such tensor modes. Here we generalize this result, and examine the sensitivity of this effect to non-zero neutrino masses, extra neutrino species, and also a possible relativistic background of axions from axion strings. In particular, additional neutrinos with cosmologically interesting neutrino masses at the O(1) eV level will noticeably reduce damping compared to massless neutrinos for gravitational wave modes with $ktau_0 approx 100-200$, where $tau_0 approx 2/H_0$ and $H_0$ is the present Hubble parameter, while an axion background would produce a phase-dependent damping distinct from that produced by neutrinos.
We explore possible non-Gaussian features of primordial gravitational waves by constructing model-independent templates for nonlinearity parameters of tensor bispectrum. Our analysis is based on Effective Field Theory of inflation that relies on no particular model as such and thus the results are quite generic. The analysis further reveals that chances of detecting squeezed limit tensor bispectrum are fairly higher than equilateral limit. We also discuss prospects of detectability in upcoming CMB missions.
Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures associated with evaporation of $lesssim 10^9$ g PBHs can be used to explore and discriminate different formation scenarios of spinning and non-spinning PBHs spanning orders of magnitude in mass-range, which is challenging to do otherwise.
82 - Haoran Di , Yungui Gong 2017
The next generation of space-borne gravitational wave detectors may detect gravitational waves from extreme mass-ratio inspirals with primordial black holes. To produce primordial black holes which contribute a non-negligible abundance of dark matter and are consistent with the observations, a large enhancement in the primordial curvature power spectrum is needed. For a single field slow-roll inflation, the enhancement requires a very flat potential for the inflaton, and this will increase the number of $e$-folds. To avoid the problem, an ultra-slow-roll inflation at the near inflection point is required. We elaborate the conditions to successfully produce primordial black hole dark matter from single field inflation and propose a toy model with polynomial potential to realize the big enhancement of the curvature power spectrum at small scales while maintaining the consistency with the observations at large scales. The power spectrum for the second order gravitational waves generated by the large density perturbations at small scales is consistent with the current pulsar timing array observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا