Do you want to publish a course? Click here

Time-Resolved Cathodoluminescence in an Ultrafast Transmission Electron Microscope

154   0   0.0 ( 0 )
 Added by Sophie Meuret
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultra-fast transmission electron microscopy (UTEM) combines sub-picosecond time-resolution with the versatility of TEM spectroscopies. It allows one to study the dynamics of materials properties combining complementary techniques. However, until now, time-resolved cathodoluminescence, which is expected to give access to the optical properties dynamics, was still unavailable in a UTEM. In this paper, we report time-resolved cathodoluminescence measurements in an ultrafast transmission electron microscope. We measured lifetime maps, with a 12 nm spatial resolution and sub-nanoseconds resolution, of nano-diamonds with a high density of NV center. This study paves the way to new applications of UTEM and to correlative studies of optically active nanostructures.



rate research

Read More

In this work, an optic fiber based $textit{in situ}$ illumination system integrated into an aberration-corrected environmental transmission electron microscope (ETEM) is designed, built, characterized and applied. With this illumination system, the dynamic responses of photoactive materials to photons can be directly observed at the atomic level, and other stimuli including heating and various gases can also be applied simultaneously. Either a broadband light source or a high power laser source aiming to expedite photoreactions can be utilized, fitting different application needs. The optic fiber enters the ETEM through the objective aperture port, with a carefully designed curvature and a 30{deg} cut at the tip to orient the emitted light upwards onto the TEM specimen. The intensity distributions striking the sample from the broadband and laser sources are both measured, and due to the non-uniform distributions, an alignment procedure has been developed to align the bright spot with the electron optical axis of the TEM. The imaging and spectroscopy performances of the ETEM are proved to be maintained after incorporating this illumination system. Furthermore, Langmuir evaporation is observed when in situ laser light is applied to GaAs, demonstrating the phenomenon of optical heating on suitable semiconductor materials.
Measuring terahertz (THz) conductivity on an ultrafast time scale is an excellent way to observe charge-carrier dynamics in semiconductors as a function of time after photoexcitation. However, a conductivity measurement alone cannot separate the effects of charge-carrier recombination from effective mass changes as charges cool and experience different regions of the electronic band structure. Here we present a form of time-resolved magneto-THz spectroscopy which allows us to measure cyclotron effective mass on a picosecond time scale. We demonstrate this technique by observing electron cooling in the technologically-significant narrow-bandgap semiconductor indium antimonide (InSb). A significant reduction of electron effective mass from 0.032$m_mathrm{e}$ to 0.017$m_mathrm{e}$ is observed in the first 200ps after injecting hot electrons. Measurement of electron effective mass in InSb as a function of photo-injected electron density agrees well with conduction band non-parabolicity predictions from ab initio calculations of the quasiparticle band structure.
We characterize the topological insulator Bi$_2$Se$_3$ using time- and angle- resolved photoemission spectroscopy. By employing two-photon photoemission, a complete picture of the unoccupied electronic structure from the Fermi level up to the vacuum level is obtained. We demonstrate that the unoccupied states host a second, Dirac surface state which can be resonantly excited by 1.5 eV photons. We then study the ultrafast relaxation processes following optical excitation. We find that they culminate in a persistent non-equilibrium population of the first Dirac surface state, which is maintained by a meta-stable population of the bulk conduction band. Finally, we perform a temperature-dependent study of the electron-phonon scattering processes in the conduction band, and find the unexpected result that their rates decrease with increasing sample temperature. We develop a model of phonon emission and absorption from a population of electrons, and show that this counter-intuitive trend is the natural consequence of fundamental electron-phonon scattering processes. This analysis serves as an important reminder that the decay rates extracted by time-resolved photoemission are not in general equal to single electron scattering rates, but include contributions from filling and emptying processes from a continuum of states.
In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (Cs-corrector) in the imaging lens system and a physical phase plate in the back focal plane of the objective lens. For a phase shift of pi/2 between scattered and unscattered electrons induced by a physical phase plate, the sine-type phase contrast transfer function is converted into a cosine-type function. Optimal imaging conditions could theoretically be achieved if the phase shifts caused by the objective lens defocus and lens aberrations would be equal zero. In reality this situation is difficult to realize because of residual aberrations and varying, non-zero local defocus values, which in general result from an uneven sample surface topography. We explore the conditions - i.e. range of Cs-values and defocus - for most favourable contrast transfer as a function of the information limit, which is only limited by the effect of partial coherence of the electron wave in Cs-corrected transmission electron microscopes. Under high-resolution operation conditions we find that a physical phase plate improves strongly low- and medium-resolution object contrast, while improving tolerance to defocus and Cs-variations, compared to a microscope without a phase plate.
130 - F. Liu , T. Makino , T. Yamazaki 2012
We have investigated the ultrafast spin dynamics in EuO thin films by time-resolved Faraday rotation spectroscopy. The photoinduced magnetization is found to be increased in a transient manner, accompanied with subsequent demagnetization. The dynamical magnetization enhancement showed a maximum slightly below the Curie temperature with prolonged tails toward both lower and higher temperatures and dominates the demagnetization counterpart at 55 K. The magnetization enhancement component decays in ~1 ns. The realization of the transient collective ordering is attributable to the enhancement of the f-d exchange interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا