Do you want to publish a course? Click here

Can we imitate stock price behavior to reinforcement learn option price?

58   0   0.0 ( 0 )
 Added by Xin Jin
 Publication date 2021
and research's language is English
 Authors Xin Jin




Ask ChatGPT about the research

This paper presents a framework of imitating the price behavior of the underlying stock for reinforcement learning option price. We use accessible features of the equities pricing data to construct a non-deterministic Markov decision process for modeling stock price behavior driven by principal investors decision making. However, low signal-to-noise ratio and instability that appear immanent in equity markets pose challenges to determine the state transition (price change) after executing an action (principal investors decision) as well as decide an action based on current state (spot price). In order to conquer these challenges, we resort to a Bayesian deep neural network for computing the predictive distribution of the state transition led by an action. Additionally, instead of exploring a state-action relationship to formulate a policy, we seek for an episode based visible-hidden state-action relationship to probabilistically imitate principal investors successive decision making. Our algorithm then maps imitative principal investors decisions to simulated stock price paths by a Bayesian deep neural network. Eventually the optimal option price is reinforcement learned through maximizing the cumulative risk-adjusted return of a dynamically hedged portfolio over simulated price paths of the underlying.



rate research

Read More

Recently, a novel adaptive wave model for financial option pricing has been proposed in the form of adaptive nonlinear Schr{o}dinger (NLS) equation [Ivancevic a], as a high-complexity alternative to the linear Black-Scholes-Merton model [Black-Scholes-Merton]. Its quantum-mechanical basis has been elaborated in [Ivancevic b]. Both the solitary and shock-wave solutions of the nonlinear model, as well as its linear (periodic) quantum simplification are shown to successfully fit the Black-Scholes data, and define the financial Greeks. This initial wave model (called the Ivancevic option pricing model) has been further extended in [Yan], by providing the new NLS solutions in the form of rogue waves (one-rogon and two-rogon solutions). In this letter, I propose a new financial research program, with a goal to develop a general wave-type model for realistic option-pricing prediction and control. Keywords: General option-price wave modeling, new financial research program
In an observed generalized semi-Markov regime, estimation of transition rate of regime switching leads towards calculation of locally risk minimizing option price. Despite the uniform convergence of estimated step function of transition rate, to meet the existence of classical solution of the modified price equation, the estimator is approximated in the class of smooth functions and furthermore, the convergence is established. Later, the existence of the solution of the modified price equation is verified and the point-wise convergence of such approximation of option price is proved to answer the tractability of its application in Finance. To demonstrate the consistency in result a numerical experiment has been reported.
We study in this paper the time evolution of stock markets using a statistical physics approach. Each agent is represented by a spin having a number of discrete states $q$ or continuous states, describing the tendency of the agent for buying or selling. The market ambiance is represented by a parameter $T$ which plays the role of the temperature in physics. We show that there is a critical value of $T$, say $T_c$, where strong fluctuations between individual states lead to a disordered situation in which there is no majority: the numbers of sellers and buyers are equal, namely the market clearing. We have considered three models: $q=3$ ( sell, buy, wait), $q=5$ (5 states between absolutely buy and absolutely sell), and $q=infty$. The specific measure, by the government or by economic organisms, is parameterized by $H$ applied on the market at the time $t_1$ and removed at the time $t_2$. We have used Monte Carlo simulations to study the time evolution of the price as functions of those parameters. Many striking results are obtained. In particular we show that the price strongly fluctuates near $T_c$ and there exists a critical value $H_c$ above which the boosting effect remains after $H$ is removed. This happens only if $H$ is applied in the critical region. Otherwise, the effect of $H$ lasts only during the time of the application of $H$. The second party of the paper deals with the price variation using a time-dependent mean-field theory. By supposing that the sellers and the buyers belong to two distinct communities with their characteristics different in both intra-group and inter-group interactions, we find the price oscillation with time.
In the past, financial stock markets have been studied with previous generations of multi-agent systems (MAS) that relied on zero-intelligence agents, and often the necessity to implement so-called noise traders to sub-optimally emulate price formation processes. However recent advances in the fields of neuroscience and machine learning have overall brought the possibility for new tools to the bottom-up statistical inference of complex systems. Most importantly, such tools allows for studying new fields, such as agent learning, which in finance is central to information and stock price estimation. We present here the results of a new generation MAS stock market simulator, where each agent autonomously learns to do price forecasting and stock trading via model-free reinforcement learning, and where the collective behaviour of all agents decisions to trade feed a centralised double-auction limit order book, emulating price and volume microstructures. We study here what such agents learn in detail, and how heterogenous are the policies they develop over time. We also show how the agents learning rates, and their propensity to be chartist or fundamentalist impacts the overall market stability and agent individual performance. We conclude with a study on the impact of agent information via random trading.
The Black-Scholes Option pricing model (BSOPM) has long been in use for valuation of equity options to find the prices of stocks. In this work, using BSOPM, we have come up with a comparative analytical approach and numerical technique to find the price of call option and put option and considered these two prices as buying price and selling price of stocks of frontier markets so that we can predict the stock price (close price). Changes have been made to the model to find the parameters strike price and the time of expiration for calculating stock price of frontier markets. To verify the result obtained using modified BSOPM we have used machine learning approach using the software Rapidminer, where we have adopted different algorithms like the decision tree, ensemble learning method and neural network. It has been observed that, the prediction of close price using machine learning is very similar to the one obtained using BSOPM. Machine learning approach stands out to be a better predictor over BSOPM, because Black-Scholes-Merton equation includes risk and dividend parameter, which changes continuously. We have also numerically calculated volatility. As the prices of the stocks goes high due to overpricing, volatility increases at a tremendous rate and when volatility becomes very high market tends to fall, which can be observed and determined using our modified BSOPM. The proposed modified BSOPM has also been explained based on the analogy of Schrodinger equation (and heat equation) of quantum physics.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا