No Arabic abstract
The magneto-rotational instability (MRI) is the most likely mechanism for transportation of angular momentum and dissipation of energy within hot, ionized accretion discs. This instability is produced through the interactions of a differentially rotating plasma with an embedded magnetic field. Like all substances in nature, the plasma in an accretion disc has the potential to become magnetically polarized when it interacts with the magnetic field. In this paper, we study the effect of this magnetic susceptibility, parameterized by $chi_m$, on the MRI, specifically within the context of black hole accretion. We find from a linear analysis within the Newtonian limit that the minimum wavelength of the first unstable mode and the wavelength of the fastest growing mode are shorter in paramagnetic ($chi_m>0$) than in diamagnetic ($chi_m<0$) discs, all other parameters being equal. Furthermore, the magnetization parameter (ratio of gas to magnetic pressure) in the saturated state should be smaller when the magnetic susceptibility is positive than when it is negative. We confirm this latter prediction through a set of numerical simulations of magnetically polarized black hole accretion discs. We additionally find that the vertically integrated stress and mass accretion rate are somewhat larger when the disc is paramagnetic than when it is diamagnetic. If astrophysical discs are able to become magnetically polarized to any significant degree, then our results would be relevant to properly interpreting observations.
We present the nucleosynthesis of magneto-rotational supernovae (MR-SNe) including neutrino-driven and magneto-rotational-driven ejecta based, for the first time, on 2D simulations with accurate neutrino transport. The models analysed here have different rotation and magnetic fields, allowing us to explore the impact of these two key ingredients. The accurate neutrino transport of the simulations is critical to analyse the slightly neutron-rich and proton-rich ejecta that are similar to the, also neutrino-driven, ejecta in standard supernovae. In the model with strong magnetic field, the r-process produces heavy elements up to the third r-process peak ($Asim 195$), in agreement with previous works. This model presents a jet-like explosion with proton-rich jets surrounded by neutron-rich material where the r-process occurs. We have estimated a lower limit for $^{56}$Ni of $2.5times10^{-2} M_odot$, which is still well below the expected hypernova value. Longer simulations including the accretion disc evolution are required to get a final prediction. In addition, we have found that the late evolution is critical in a model with weak magnetic field in which late-ejected neutron-rich matter produces elements up to the second r-process peak. Even if we cannot yet provide conclusions for hypernova nucleosynthesis, our results agree with observations of old stars and radioactive isotopes in supernova remnants. This makes MR-SNe a good additional scenario to neutron star mergers for the synthesis of heavy elements and brings us closer to understand their origin and the role of MR-SNe in the early Galaxy nucleosynthesis.
We investigated r-process nucleosynthesis in magneto-rotational supernovae, based on a new explosion mechanism induced by the magneto-rotational instability. A series of axisymmetric magneto-hydrodynamical simulations with detailed microphysics including neutrino heating is performed, numerically resolving the magneto-rotational instability. Neutrino-heating dominated explosions, enhanced by magnetic fields, showed mildly neutron-rich ejecta producing nuclei up to $A sim 130$ (i.e. the weak r-process), while explosion models with stronger magnetic fields reproduce a solar-like r-process pattern. More commonly seen abundance patterns in our models are in between the weak and regular r-process, producing lighter and intermediate mass nuclei. These {it intermediate r-processes} exhibit a variety of abundance distributions, compatible with several abundance patterns in r-process-enhanced metal-poor stars. The amount of Eu ejecta $sim 10^{-5} M_odot$ in magnetically-driven jets agrees with predicted values in the chemical evolution of early galaxies. In contrast, neutrino-heating dominated explosions have a significant amount of Fe ($^{56}{rm Ni}$) and Zn, comparable to regular supernovae and hypernovae, respectively. These results indicate magneto-rotational supernovae can produce a wide range of heavy nuclei from iron-group to r-process elements, depending on the explosion dynamics.
We present the results obtained from linear stability analysis and 2.5-dimensional magnetohydrodynamic (MHD) simulations of the magnetorotational instability (MRI), including the effects of cosmic rays (CRs). We took into account of the CR diffusion along the magnetic field but neglect the cross-field-line diffusion. Two models are considered in this paper: shearing box model and differentially rotating cylinder model. We studied how MRI is affected by the initial CR pressure (i.e., energy) distribution. In the shearing box model, the initial state is uniform distribution. Linear analysis shows that the growth rate of MRI does not depend on the value of CR diffusion coefficient. In the differentially rotating cylinder model, the initial state is a constant angular momentum polytropic disk threaded by weak uniform vertical magnetic field. Linear analysis shows that the growth rate of MRI becomes larger if the CR diffusion coefficient is larger. Both results are confirmed by MHD simulations. The MHD simulation results show that the outward movement of matter by the growth of MRI is not impeded by the CR pressure gradient, and the centrifugal force which acts to the concentrated matter becomes larger. Consequently, the growth rate of MRI is increased. On the other hand, if the initial CR pressure is uniform, then the growth rate of the MRI barely depends on the value of the CR diffusion coefficient.
Bearing in mind the application to core-collapse supernovae, we study nonlinear properties of the magneto-rotational instability (MRI) by means of three- dimensional simulations in the framework of a local shearing box approximation. By changing systematically the shear rates that symbolize the degree of differential rotation in nascent proto-neutron stars (PNSs), we derive a scaling relation between the turbulent stress sustained by the MRI and the shear- vorticity ratio. Our parametric survey shows a power-law scaling between the turbulent stress ($<< w_{rm tot}>>$) and the shear- vorticity ratio ($g_q$) as $<<w_{rm tot}>> propto g_q^{delta}$ with its index $delta sim 0.5$. The MRI-amplified magnetic energy has a similar scaling relative to the turbulent stress, while the Maxwell stress has slightly smaller power-law index ($sim 0.36$). By modeling the effect of viscous heating rates due to the MRI turbulence, we show that the stronger magnetic fields or the larger shear rates initially imposed lead to the higher dissipation rates. For a rapidly rotating PNS with the spin period in milliseconds and with strong magnetic fields of $10^{15}$ G, the energy dissipation rate is estimated to exceed $10^{51} {rm erg sec^{-1}}$. Our results suggest that the conventional magnetohydrodynamic (MHD) mechanism of core-collapse supernovae is likely to be affected by the MRI-driven turbulence, which we speculate, on one hand, could harm the MHD-driven explosions due to the dissipation of the shear rotational energy at the PNS surface, on the other hand the energy deposition there might be potentially favorable for the working of the neutrino-heating mechanism.
In accretion disks with large-scale ordered magnetic fields, the magnetorotational instability (MRI) is marginally suppressed, so other processes may drive angular momentum transport leading to accretion. Accretion could then be driven by large-scale magnetic fields via magnetic braking, but large-scale magnetic flux can build-up onto the black hole and within the disk leading to a magnetically-arrested disk (MAD). Such a MAD state is unstable to the magnetic Rayleigh-Taylor (RT) instability, which itself leads to vigorous turbulence and the emergence of low-density highly-magnetized bubbles. This instability was studied in a thin (ratio of half-height H to radius R, $H/R approx 0.1$) MAD simulation, where it has a more dramatic effect on the dynamics of the disk than for thicker disks. We find that the low-density bubbles created by the magnetic RT instability decrease the stress (leading to angular momentum transport) in the disk rather than increasing magnetic torques. Indeed, we find that the dominant component of the stress is due to turbulent magnetic fields, despite the suppression of the axisymmetric MRI and the dominant presence of large-scale magnetic fields. This suggests that the magnetic RT instability plays a significant role in driving angular momentum transport in MADs.