Do you want to publish a course? Click here

Real-time Human Action Recognition Using Locally Aggregated Kinematic-Guided Skeletonlet and Supervised Hashing-by-Analysis Model

80   0   0.0 ( 0 )
 Added by Bin Sun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

3D action recognition is referred to as the classification of action sequences which consist of 3D skeleton joints. While many research work are devoted to 3D action recognition, it mainly suffers from three problems: highly complicated articulation, a great amount of noise, and a low implementation efficiency. To tackle all these problems, we propose a real-time 3D action recognition framework by integrating the locally aggregated kinematic-guided skeletonlet (LAKS) with a supervised hashing-by-analysis (SHA) model. We first define the skeletonlet as a few combinations of joint offsets grouped in terms of kinematic principle, and then represent an action sequence using LAKS, which consists of a denoising phase and a locally aggregating phase. The denoising phase detects the noisy action data and adjust it by replacing all the features within it with the features of the corresponding previous frame, while the locally aggregating phase sums the difference between an offset feature of the skeletonlet and its cluster center together over all the offset features of the sequence. Finally, the SHA model which combines sparse representation with a hashing model, aiming at promoting the recognition accuracy while maintaining a high efficiency. Experimental results on MSRAction3D, UTKinectAction3D and Florence3DAction datasets demonstrate that the proposed method outperforms state-of-the-art methods in both recognition accuracy and implementation efficiency.

rate research

Read More

State-of-the-art video action recognition models with complex network architecture have archived significant improvements, but these models heavily depend on large-scale well-labeled datasets. To reduce such dependency, we propose a self-supervised teacher-student architecture, i.e., the Differentiated Teachers Guided self-supervised Network (DTG-Net). In DTG-Net, except for reducing labeled data dependency by self-supervised learning (SSL), pre-trained action related models are used as teacher guidance providing prior knowledge to alleviate the demand for a large number of unlabeled videos in SSL. Specifically, leveraging the years of effort in action-related tasks, e.g., image classification, image-based action recognition, the DTG-Net learns the self-supervised video representation under various teacher guidance, i.e., those well-trained models of action-related tasks. Meanwhile, the DTG-Net is optimized in the way of contrastive self-supervised learning. When two image sequences are randomly sampled from the same video or different videos as the positive or negative pairs, respectively, they are then sent to the teacher and student networks for feature embedding. After that, the contrastive feature consistency is defined between features embedding of each pair, i.e., consistent for positive pair and inconsistent for negative pairs. Meanwhile, to reflect various teacher tasks different guidance, we also explore different weighted guidance on teacher tasks. Finally, the DTG-Net is evaluated in two ways: (i) the self-supervised DTG-Net to pre-train the supervised action recognition models with only unlabeled videos; (ii) the supervised DTG-Net to be jointly trained with the supervised action networks in an end-to-end way. Its performance is better than most pre-training methods but also has excellent competitiveness compared to supervised action recognition methods.
Convolutional neural networks (CNN) have recently achieved remarkable successes in various image classification and understanding tasks. The deep features obtained at the top fully-connected layer of the CNN (FC-features) exhibit rich global semantic information and are extremely effective in image classification. On the other hand, the convolutional features in the middle layers of the CNN also contain meaningful local information, but are not fully explored for image representation. In this paper, we propose a novel Locally-Supervised Deep Hybrid Model (LS-DHM) that effectively enhances and explores the convolutional features for scene recognition. Firstly, we notice that the convolutional features capture local objects and fine structures of scene images, which yield important cues for discriminating ambiguous scenes, whereas these features are significantly eliminated in the highly-compressed FC representation. Secondly, we propose a new Local Convolutional Supervision (LCS) layer to enhance the local structure of the image by directly propagating the label information to the convolutional layers. Thirdly, we propose an efficient Fisher Convolutional Vector (FCV) that successfully rescues the orderless mid-level semantic information (e.g. objects and textures) of scene image. The FCV encodes the large-sized convolutional maps into a fixed-length mid-level representation, and is demonstrated to be strongly complementary to the high-level FC-features. Finally, both the FCV and FC-features are collaboratively employed in the LSDHM representation, which achieves outstanding performance in our experiments. It obtains 83.75% and 67.56% accuracies respectively on the heavily benchmarked MIT Indoor67 and SUN397 datasets, advancing the stat-of-the-art substantially.
Skeleton-based human action recognition has attracted great interest thanks to the easy accessibility of the human skeleton data. Recently, there is a trend of using very deep feedforward neural networks to model the 3D coordinates of joints without considering the computational efficiency. In this paper, we propose a simple yet effective semantics-guided neural network (SGN) for skeleton-based action recognition. We explicitly introduce the high level semantics of joints (joint type and frame index) into the network to enhance the feature representation capability. In addition, we exploit the relationship of joints hierarchically through two modules, i.e., a joint-level module for modeling the correlations of joints in the same frame and a framelevel module for modeling the dependencies of frames by taking the joints in the same frame as a whole. A strong baseline is proposed to facilitate the study of this field. With an order of magnitude smaller model size than most previous works, SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets. The source code is available at https://github.com/microsoft/SGN.
In this work we present a new efficient approach to Human Action Recognition called Video Transformer Network (VTN). It leverages the latest advances in Computer Vision and Natural Language Processing and applies them to video understanding. The proposed method allows us to create lightweight CNN models that achieve high accuracy and real-time speed using just an RGB mono camera and general purpose CPU. Furthermore, we explain how to improve accuracy by distilling from multiple models with different modalities into a single model. We conduct a comparison with state-of-the-art methods and show that our approach performs on par with most of them on famous Action Recognition datasets. We benchmark the inference time of the models using the modern inference framework and argue that our approach compares favorably with other methods in terms of speed/accuracy trade-off, running at 56 FPS on CPU. The models and the training code are available.
160 - Zeeshan Ahmad , Naimul Khan 2020
One of the major reasons for misclassification of multiplex actions during action recognition is the unavailability of complementary features that provide the semantic information about the actions. In different domains these features are present with different scales and intensities. In existing literature, features are extracted independently in different domains, but the benefits from fusing these multidomain features are not realized. To address this challenge and to extract complete set of complementary information, in this paper, we propose a novel multidomain multimodal fusion framework that extracts complementary and distinct features from different domains of the input modality. We transform input inertial data into signal images, and then make the input modality multidomain and multimodal by transforming spatial domain information into frequency and time-spectrum domain using Discrete Fourier Transform (DFT) and Gabor wavelet transform (GWT) respectively. Features in different domains are extracted by Convolutional Neural networks (CNNs) and then fused by Canonical Correlation based Fusion (CCF) for improving the accuracy of human action recognition. Experimental results on three inertial datasets show the superiority of the proposed method when compared to the state-of-the-art.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا