Do you want to publish a course? Click here

WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection

122   0   0.0 ( 0 )
 Added by Shijie Fang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The performance of object detection, to a great extent, depends on the availability of large annotated datasets. To alleviate the annotation cost, the research community has explored a number of ways to exploit unlabeled or weakly labeled data. However, such efforts have met with limited success so far. In this work, we revisit the problem with a pragmatic standpoint, trying to explore a new balance between detection performance and annotation cost by jointly exploiting fully and weakly annotated data. Specifically, we propose a weakly- and semi-supervised object detection framework (WSSOD), which involves a two-stage learning procedure. An agent detector is first trained on a joint dataset and then used to predict pseudo bounding boxes on weakly-annotated images. The underlying assumptions in the current as well as common semi-supervised pipelines are also carefully examined under a unified EM formulation. On top of this framework, weakly-supervised loss (WSL), label attention and random pseudo-label sampling (RPS) strategies are introduced to relax these assumptions, bringing additional improvement on the efficacy of the detection pipeline. The proposed framework demonstrates remarkable performance on PASCAL-VOC and MSCOCO benchmark, achieving a high performance comparable to those obtained in fully-supervised settings, with only one third of the annotations.



rate research

Read More

Object detection when provided image-level labels instead of instance-level labels (i.e., bounding boxes) during training is an important problem in computer vision, since large scale image datasets with instance-level labels are extremely costly to obtain. In this paper, we address this challenging problem by developing an Expectation-Maximization (EM) based object detection method using deep convolutional neural networks (CNNs). Our method is applicable to both the weakly-supervised and semi-supervised settings. Extensive experiments on PASCAL VOC 2007 benchmark show that (1) in the weakly supervised setting, our method provides significant detection performance improvement over current state-of-the-art methods, (2) having access to a small number of strongly (instance-level) annotated images, our method can almost match the performace of the fully supervised Fast RCNN. We share our source code at https://github.com/ZiangYan/EM-WSD.
We propose a novel point annotated setting for the weakly semi-supervised object detection task, in which the dataset comprises small fully annotated images and large weakly annotated images by points. It achieves a balance between tremendous annotation burden and detection performance. Based on this setting, we analyze existing detectors and find that these detectors have difficulty in fully exploiting the power of the annotated points. To solve this, we introduce a new detector, Point DETR, which extends DETR by adding a point encoder. Extensive experiments conducted on MS-COCO dataset in various data settings show the effectiveness of our method. In particular, when using 20% fully labeled data from COCO, our detector achieves a promising performance, 33.3 AP, which outperforms a strong baseline (FCOS) by 2.0 AP, and we demonstrate the point annotations bring over 10 points in various AR metrics.
Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.
Semi-supervised learning, i.e., training networks with both labeled and unlabeled data, has made significant progress recently. However, existing works have primarily focused on image classification tasks and neglected object detection which requires more annotation effort. In this work, we revisit the Semi-Supervised Object Detection (SS-OD) and identify the pseudo-labeling bias issue in SS-OD. To address this, we introduce Unbiased Teacher, a simple yet effective approach that jointly trains a student and a gradually progressing teacher in a mutually-beneficial manner. Together with a class-balance loss to downweight overly confident pseudo-labels, Unbiased Teacher consistently improved state-of-the-art methods by significant margins on COCO-standard, COCO-additional, and VOC datasets. Specifically, Unbiased Teacher achieves 6.8 absolute mAP improvements against state-of-the-art method when using 1% of labeled data on MS-COCO, achieves around 10 mAP improvements against the supervised baseline when using only 0.5, 1, 2% of labeled data on MS-COCO.
179 - Wangbo Zhao , Jing Zhang , Long Li 2021
Significant performance improvement has been achieved for fully-supervised video salient object detection with the pixel-wise labeled training datasets, which are time-consuming and expensive to obtain. To relieve the burden of data annotation, we present the first weakly supervised video salient object detection model based on relabeled fixation guided scribble annotations. Specifically, an Appearance-motion fusion module and bidirectional ConvLSTM based framework are proposed to achieve effective multi-modal learning and long-term temporal context modeling based on our new weak annotations. Further, we design a novel foreground-background similarity loss to further explore the labeling similarity across frames. A weak annotation boosting strategy is also introduced to boost our model performance with a new pseudo-label generation technique. Extensive experimental results on six benchmark video saliency detection datasets illustrate the effectiveness of our solution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا