Do you want to publish a course? Click here

High-Pressure Na3(N2)4, Ca3(N2)4, Sr3(N2)4, and Ba(N2)3 Featuring Nitrogen Dimers with Non-Integer Charges and Anion-Driven Metallicity

109   0   0.0 ( 0 )
 Added by Dominique Laniel
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Charged nitrogen dimers are ubiquitous in high-pressure binary metal-nitrogen systems. They are known to possess integer formal charges x varying from one through four. Here, we present the investigation of the binary alkali- and alkaline earth metal-nitrogen systems, Na-N, Ca-N, Sr-N, Ba-N to 70 GPa. We report on compounds-Na3(N2)4, Ca3(N2)4, Sr3(N2)4, and Ba(N2)3-featuring charged nitrogen dimers with paradigm-breaking non-integer charges, x = 0.67, 0.75 and 1.5. The metallic nature of all four compounds is deduced from ab initio calculations. The conduction electrons occupy the pi* antibonding orbitals of the charged nitrogen dimers that results in anion-driven metallicity. Delocalization of these electrons over the pi* antibonding states enables the non-integer electron count of the dinitrogen species. Anion-driven metallicity is expected to be found among a variety of compounds with homoatomic anions (e.g., polynitrides, carbides, and oxides), with the conduction electrons playing a decisive role in their properties.



rate research

Read More

Controllable doping of two-dimensional materials is highly desired for ideal device performance in both hetero- and p-n homo-junctions. Herein, we propose an effective strategy for doping of MoS2 with nitrogen through a remote N2 plasma surface treatment. By monitoring the surface chemistry of MoS2 upon N2 plasma exposure using in-situ X-ray photoelectron spectroscopy, we identified the presence of covalently bonded nitrogen in MoS2, where substitution of the chalcogen sulfur by nitrogen is determined as the doping mechanism. Furthermore, the electrical characterization demonstrates that p-type doping of MoS2 is achieved by nitrogen doping, in agreement with theoretical predictions. Notably, we found that the presence of nitrogen can induce compressive strain in the MoS2 structure, which represents the first evidence of strain induced by substitutional doping in a transition metal dichalcogenide material. Finally, our first principle calculations support the experimental demonstration of such strain, and a correlation between nitrogen doping concentration and compressive strain in MoS2 is elucidated.
Great enthusiasm in single atom catalysts (SACs) for the N2 reduction reaction (NRR) has been aroused by the discovery of Metal (M)-Nx as a promising catalytic center. However,the performance of available SACs,including poor activity and selectivity,is far away from the industrial requirement because of the inappropriate adsorption behaviors of the catalytic centers. Through the first principles high throughput screening, we find that the rational construction of Fe-Fe dual atom centered site distributed on graphite carbon nitride (Fe2/gCN) compromises the ability to adsorb N2H and NH2, achieving the best NRR performance among 23 different transition metal (TM) centers. Our results show that Fe2/gCN can achieve a Faradic efficiency of 100% for NH3 production. Impressively, the limiting potential of Fe2/gCN is estimated as low as -0.13 V, which is hitherto the lowest value among the reported theoretical results. Multiple level descriptors (excess electrons on the adsorbed N2 and integrated crystal orbital Hamilton population) shed light on the origin of NRR activity from the view of energy, electronic structure, and basic characteristics. As a ubiquitous issue during electrocatalytic NRR, ammonia contamination originating from the substrate decomposition can be surmounted. Our predictions offer a new platform for electrocatalytic synthesis of NH3, contributing to further elucidate the structure-performance correlations.
Using a streak camera, we directly measure time- and space-resolved dynamics of N2+ emission from a self-seeded filament. We observe characteristic signatures of superfluorescence even under ambient conditions and show that the timing of the emitted light varies along the length of the filament. These effects must be taken into consideration for accurate modelling of light filaments in air, and can be exploited to engineer the temporal profile of light emission in air lasing.
Ultraviolet photodesorption of molecules from icy interstellar grains can explain observations of cold gas in regions where thermal desorption is negligible. This non-thermal desorption mechanism should be especially important where UV fluxes are high. N2 and O2 are expected to play key roles in astrochemical reaction networks, both in the solid state and in the gas phase. Measurements of the wavelength-dependent photodesorption rates of these two infrared-inactive molecules provide astronomical and physical-chemical insights into the conditions required for their photodesorption. Tunable radiation from the DESIRS beamline at the SOLEIL synchrotron in the astrophysically relevant 7 to 13.6 eV range is used to irradiate pure N2 and O2 thin ice films. Photodesorption of molecules is monitored through quadrupole mass spectrometry. Absolute rates are calculated by using the well-calibrated CO photodesorption rates. Strategic N2 and O2 isotopolog mixtures are used to investigate the importance of dissociation upon irradiation. N2 photodesorption mainly occurs through excitation of the b^1Pi_u state and subsequent desorption of surface molecules. The observed vibronic structure in the N2 photodesorption spectrum, together with the absence of N3 formation, supports that the photodesorption mechanism of N2 is similar to CO, i.e., an indirect DIET (Desorption Induced by Electronic Transition) process without dissociation of the desorbing molecule. In contrast, O2 photodesorption in the 7 - 13.6 eV range occurs through dissociation and presents no vibrational structure. Photodesorption rates of N2 and O2 integrated over the far-UV field from various star-forming environments are lower than for CO. Rates vary between 10E-3 and 10E-2 photodesorbed molecules per incoming photon.
The origin of the interstellar object 1I/Oumuamua, has defied explanation. In a companion paper (Jackson & Desch, 2021), we show that a body of N2 ice with axes 45 m x 44 m x 7.5 m at the time of observation would be consistent with its albedo, non-gravitational acceleration, and lack of observed CO or CO2 or dust. Here we demonstrate that impacts on the surfaces of Pluto-like Kuiper belt objects (KBOs) would have generated and ejected ~10^14 collisional fragments--roughly half of them H2O ice fragments and half of them N2 ice fragments--due to the dynamical instability that depleted the primordial Kuiper belt. We show consistency between these numbers and the frequency with which we would observe interstellar objects like 1I/Oumuamua, and more comet-like objects like 2I/Borisov, if other stellar systems eject such objects with efficiency like that of the Sun; we infer that differentiated KBOs and dynamical instabilities that eject impact-generated fragments may be near-universal among extrasolar systems. Galactic cosmic rays would erode such fragments over 4.5 Gyr, so that fragments are a small fraction (~0.1%) of long-period Oort comets, but C/2016 R2 may be an example. We estimate Oumuamua was ejected about 0.4-0.5 Gyr ago, from a young (~10^8 yr) stellar system, which we speculate was in the Perseus arm. Objects like Oumuamua may directly probe the surface compositions of a hitherto-unobserved type of exoplanet: exo-plutos. Oumuamua may be the first sample of an exoplanet brought to us.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا