Do you want to publish a course? Click here

The New Ephemeris and Light Curve Analysis of V870 Ara by the Ground-Based and TESS Data

118   0   0.0 ( 0 )
 Added by Atila Poro
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

New CCD photometric observations and their investigation of the W UMa-type binary, V870 Ara, are presented. Light curves of the system were taken through BVI filters from the Congarinni Observatory in Australia. The new ephemeris is calculated based on seven new determined minimum times, together with the TESS data and others compiled from the literature. Photometric solutions determined by the Wilson-Devinney (W-D) code are combined with the Monte Carlo simulation to determine the adjustable parameters uncertainties. These solutions suggest that V870 Ara is a contact binary system with a mass ratio of 0.082, a fillout factor of 96+-4 percent, and an inclination of 73.60+-0.64 degrees. The absolute parameters of V870 Ara were determined by combining the Gaia EDR3 parallax and photometric elements.



rate research

Read More

Photometric observations of exoplanet transits can be used to derive the orbital and physical parameters of an exoplanet. We analyzed several transit light curves of exoplanets that are suitable for ground-based observations whose complete information is available on the Exoplanet Transit Database (ETD). We analyzed transit data of planets including HAT-P-8 b, HAT-P-16 b, HAT-P-21 b, HAT-P-22 b, HAT-P-28 b and HAT-P-30 b using the AstroImageJ (AIJ) software package. In this paper, we investigated 82 transit light curves from ETD, deriving their physical parameters as well as computing their mid-transit times for future Transit Timing Variation (TTV) analyses. The Precise values of the parameters show that using AIJ as a fitting tool for follow-up observations can lead to results comparable to the values at the NASA Exoplanet Archive (the NEA). Such information will be invaluable considering the numbers of future discoveries from the ground and space-based exoplanet surveys.
110 - P. F. L. Maxted 2020
Accurate masses and radii for normal stars derived from observations of detached eclipsing binary stars are of fundamental importance for testing stellar models and may be useful for calibrating free parameters in these model if the masses and radii are sufficiently precise and accurate. We aim to measure precise masses and radii for the stars in the bright eclipsing binary AI Phe, and to quantify the level of systematic error in these estimates. We use several different methods to model the TESS light curve of AI Phe combined with spectroscopic orbits from multiple sources to estimate precisely the stellar masses and radii together with robust error estimates. We find that the agreement between different methods for the light curve analysis is very good but some methods underestimate the errors on the model parameters. The semi-amplitudes of the spectroscopic orbits derived from spectra obtained with modern echelle spectrographs are consistent to within 0.1%. The masses of the stars in AI Phe are $M_1 = 1.1938 pm 0.0008 M_{odot}$ and $M_2 = 1.2438 pm 0.0008M_{odot}$, and the radii are $R_1 = 1.8050 pm 0.0022 R_{odot}$ and $R_2 = 2.9332 pm 0.0023 R_{odot}$. We conclude that it is possible to measure accurate masses and radii for stars in bright eclipsing binary stars to a precision of 0.2% or better using photometry from TESS and spectroscopy obtained with modern echelle spectrographs. We provide recommendations for publishing masses and radii of eclipsing binary stars at this level of precision.
WASP-12 b, WASP-33 b, WASP-36 b, and WASP-46 b are four transiting planetary systems which we have studied. These systems light curves were derived from observations made by the Transiting Light Exoplanet Survey Satellite (TESS) and some ground-based telescopes. We used Exofast-v1 to model these light curves and calculate mid-transit times. Also, we plotted TTV diagrams for them using derived mid-transit times and those available within the literature. O-C analysis of these timings enables us to refine the linear ephemeris of four systems. We measured WASP-12s tidal quality factor based on adding TESS data as Q*=(2.13+-0.29)*10^5. According to the analysis, the orbital period of the WASP-46 b system is increasing. The WASP-36 b and WASP-33 b systems have not shown any obvious quadratic trend in their TTV diagrams. The increase in their period is most likely due to inaccurate liner ephemeris that has increased over time. So, more observations are needed to evaluate whether or not there is an orbital decay in the WASP-36 b and WASP-33 b systems.
The new photometric data on pulsating Ap star HD~27463 obtained recently with the Transiting Exoplanet Survey Satellite (textit{TESS}) are analysed to search for variability. Our analysis shows that HD~27463 exhibits two types of photometric variability. The low frequency variability with the period $P$ =~2.834274 $pm$ 0.000008 d can be explained in terms of axial stellar rotation assuming the oblique magnetic rotator model and presence of surface abundance/brightness spots, while the detected high-frequency variations are characteristics of $delta$~Scuti pulsations. From the analysis of Balmer line profiles visible in two FEROS spectra of HD~27463 we have derived its effective temperature and surface gravity, finding values that are close to those published for this star in the textit{TESS} Input Catalogue (TIC). Knowing the rotation period and the v$sin{i}$ value estimated from the fitting of Balmer line profiles we found that the rotational axis is inclined to the line of sight with an angle of $i=33pm8deg$. Our best-fitting model of the observed pulsation modes results in an overshoot parameter value $f_{ov} = 0.014$ and values of global stellar parameters that are in good agreement with the data reported in the TIC and with the data derived from fitting Balmer line profiles. This model indicates an age of 5.0 $pm$~0.4 $times 10^8$~yrs, which corresponds to a core hydrogen fraction of 0.33.
Data from the Transiting Exoplanet Survey Satellite (TESS) has produced of order one million light curves at cadences of 120 s and especially 1800 s for every ~27-day observing sector during its two-year nominal mission. These data constitute a treasure trove for the study of stellar variability and exoplanets. However, to fully utilize the data in such studies a proper removal of systematic noise sources must be performed before any analysis. The TESS Data for Asteroseismology (TDA) group is tasked with providing analysis-ready data for the TESS Asteroseismic Science Consortium, which covers the full spectrum of stellar variability types, including stellar oscillations and pulsations, spanning a wide range of variability timescales and amplitudes. We present here the two current implementations for co-trending of raw photometric light curves from TESS, which cover different regimes of variability to serve the entire seismic community. We find performance in terms of commonly used noise statistics to meet expectations and to be applicable to a wide range of different intrinsic variability types. Further, we find that the correction of light curves from a full sector of data can be completed well within a few days, meaning that when running in steady-state our routines are able to process one sector before data from the next arrives. Our pipeline is open-source and all processed data will be made available on TASOC and MAST.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا