Do you want to publish a course? Click here

A Bright Fast Radio Burst from FRB 20200120E with Sub-100-Nanosecond Structure

398   0   0.0 ( 0 )
 Added by Walid Majid
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the detection of a bright radio burst at radio frequencies between 2.2--2.3 GHz with the NASA Deep Space Network (DSN) 70 m dish (DSS-63) in Madrid, Spain from FRB~20200120E. This repeating fast radio burst (FRB) was recently discovered by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) instrument and reported to be associated with the M81 spiral galaxy at a distance of 3.6 Mpc. The high time resolution capabilities of the recording system used in this observation, together with the small amount of scattering and intrinsic brightness of the burst, allow us to explore the burst structure in unprecedented detail. We find that the burst has a duration of roughly 30 $mu$s and is comprised of several narrow components with typical separations of 2--3 $mu$s. The narrowest component has a width of $lesssim$ 100 ns, which corresponds to a light travel time size as small as 30 m, the smallest associated with an FRB to date. The peak flux density of the narrowest burst component is 270 Jy. We estimate the total spectral luminosity of the narrowest component of the burst to be 4 $times$ 10$^{text{30}}$ erg s$^{text{-1}}$ Hz$^{text{-1}}$, which is a factor of $sim$500 above the luminosities of the so-called nanoshots associated with giant pulses from the Crab pulsar. This spectral luminosity is also higher than that of the radio bursts detected from the Galactic magnetar SGR 1935+2154 during its outburst in April 2020, but it falls on the low-end of the currently measured luminosity distribution of extragalatic FRBs. These results provide further support for the presence of a continuum of FRB burst luminosities.

rate research

Read More

We report the detection of repeat bursts from the source of FRB 171019, one of the brightest fast radio bursts (FRBs) detected in the Australian Square Kilometre Array Pathfinder (ASKAP) flys eye survey. Two bursts from the source were detected with the Green Bank Telescope in observations centered at 820 MHz. The repetitions are a factor of $sim 590$ fainter than the ASKAP-discovered burst. All three bursts from this source show no evidence of scattering and have consistent pulse widths. The pulse spectra show modulation that could be evidence for either steep spectra or patchy emission. The two repetitions were the only ones found in an observing campaign for this FRB totaling 1000 hr, which also included ASKAP and the 64-m Parkes radio telescope, over a range of frequencies (720$-$2000 MHz) at epochs spanning two years. The inferred scaling of repetition rate with fluence of this source agrees with the other repeating source, FRB 121102. The detection of faint pulses from FRB 171019 shows that at least some FRBs selected from bright samples will repeat if follow-up observations are conducted with more sensitive telescopes.
We report on the discovery and analysis of bursts from nine new repeating fast radio burst (FRB) sources found using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. These sources span a dispersion measure (DM) range of 195 to 1380 pc cm$^{-3}$. We detect two bursts from three of the new sources, three bursts from four of the new sources, four bursts from one new source, and five bursts from one new source. We determine sky coordinates of all sources with uncertainties of $sim$10$^prime$. We detect Faraday rotation measures for two sources, with values $-20(1)$ and $-499.8(7)$ rad m$^{-2}$, that are substantially lower than the RM derived from bursts emitted by FRB 121102. We find that the DM distribution of our events, combined with the nine other repeaters discovered by CHIME/FRB, is indistinguishable from that of thus far non-repeating CHIME/FRB events. However, as previously reported, the burst widths appear statistically significantly larger than the thus far non-repeating CHIME/FRB events, further supporting the notion of inherently different emission mechanisms and/or local environments. These results are consistent with previous work, though are now derived from 18 repeating sources discovered by CHIME/FRB during its first year of operation. We identify candidate galaxies that may contain FRB 190303.J1353+48 (DM = 222.4 pc cm$^{-3}$).
We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and non-repeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent non-repeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent non-repeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs - comprising a large fraction of the overall population - with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of $alpha=-1.40pm0.11(textrm{stat.})^{+0.06}_{-0.09}(textrm{sys.})$, consistent with the $-3/2$ expectation for a non-evolving population in Euclidean space. We find $alpha$ is steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of $[820pm60(textrm{stat.})^{+220}_{-200}({textrm{sys.}})]/textrm{sky}/textrm{day}$ above a fluence of 5 Jy ms at 600 MHz, with scattering time at $600$ MHz under 10 ms, and DM above 100 pc cm$^{-3}$.
The origin of fast radio bursts (FRBs), millisecond-duration flashes of radio waves that are visible at distances of billions of light-years, remains an open astrophysical question. Here we report the detection of the multi-component FRB 20191221A with the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB), and the identification of a periodic separation of 216.8(1) ms between its components with a significance of 6.5 sigmas. The long (~ 3 s) duration and nine or more components forming the pulse profile make this source an outlier in the FRB population. We also report two additional FRBs, 20210206A and 20210213A, whose multi-component pulse profiles show some indication of periodic separations of 2.8(1) and 10.7(1) ms, respectively, suggesting the possible existence of a group of FRBs with complex and periodic pulse profiles. Such short periodicities provide strong evidence for a neutron-star origin of these events. Moreover, our detections favour emission arising from the neutron-star magnetosphere, as opposed to emission regions located further away from the star, as predicted by some models. Possible explanations for the observed periodicity include super-giant pulses from a neutron star that are possibly related to a magnetar outburst and interacting neutron stars in a binary system.
We report the detection of a single burst from the first-discovered repeating Fast Radio Burst source, FRB 121102, with CHIME/FRB, which operates in the frequency band 400-800 MHz. The detected burst occurred on 2018 November 19 and its emission extends down to at least 600 MHz, the lowest frequency detection of this source yet. The burst, detected with a significance of 23.7$sigma$, has fluence 12$pm$3 Jy ms and shows complex time and frequency morphology. The 34 ms width of the burst is the largest seen for this object at any frequency. We find evidence of sub-burst structure that drifts downward in frequency at a rate of -3.9$pm$0.2 MHz ms$^{-1}$. Our best fit tentatively suggests a dispersion measure of 563.6$pm$0.5 pc cm$^{-3}$, which is ${approx}$1% higher than previously measured values. We set an upper limit on the scattering time at 500 MHz of 9.6 ms, which is consistent with expectations from the extrapolation from higher frequency data. We have exposure to the position of FRB 121102 for a total of 11.3 hrs within the FWHM of the synthesized beams at 600 MHz from 2018 July 25 to 2019 February 25. We estimate on the basis of this single event an average burst rate for FRB 121102 of 0.1-10 per day in the 400-800 MHz band for a median fluence threshold of 7 Jy ms in the stated time interval.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا