Do you want to publish a course? Click here

Denoising Noisy Neural Networks: A Bayesian Approach with Compensation

208   0   0.0 ( 0 )
 Added by Yulin Shao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Noisy neural networks (NoisyNNs) refer to the inference and training of NNs in the presence of noise. Noise is inherent in most communication and storage systems; hence, NoisyNNs emerge in many new applications, including federated edge learning, where wireless devices collaboratively train a NN over a noisy wireless channel, or when NNs are implemented/stored in an analog storage medium. This paper studies a fundamental problem of NoisyNNs: how to estimate the uncontaminated NN weights from their noisy observations or manifestations. Whereas all prior works relied on the maximum likelihood (ML) estimation to maximize the likelihood function of the estimated NN weights, this paper demonstrates that the ML estimator is in general suboptimal. To overcome the suboptimality of the conventional ML estimator, we put forth an $text{MMSE}_{pb}$ estimator to minimize a compensated mean squared error (MSE) with a population compensator and a bias compensator. Our approach works well for NoisyNNs arising in both 1) noisy inference, where noise is introduced only in the inference phase on the already-trained NN weights; and 2) noisy training, where noise is introduced over the course of training. Extensive experiments on the CIFAR-10 and SST-2 datasets with different NN architectures verify the significant performance gains of the $text{MMSE}_{pb}$ estimator over the ML estimator when used to denoise the NoisyNN. For noisy inference, the average gains are up to $156%$ for a noisy ResNet34 model and $14.7%$ for a noisy BERT model; for noisy training, the average gains are up to $18.1$ dB for a noisy ResNet18 model.



rate research

Read More

As neural networks get widespread adoption in resource-constrained embedded devices, there is a growing need for low-power neural systems. Spiking Neural Networks (SNNs)are emerging to be an energy-efficient alternative to the traditional Artificial Neural Networks (ANNs) which are known to be computationally intensive. From an application perspective, as federated learning involves multiple energy-constrained devices, there is a huge scope to leverage energy efficiency provided by SNNs. Despite its importance, there has been little attention on training SNNs on a large-scale distributed system like federated learning. In this paper, we bring SNNs to a more realistic federated learning scenario. Specifically, we propose a federated learning framework for decentralized and privacy-preserving training of SNNs. To validate the proposed federated learning framework, we experimentally evaluate the advantages of SNNs on various aspects of federated learning with CIFAR10 and CIFAR100 benchmarks. We observe that SNNs outperform ANNs in terms of overall accuracy by over 15% when the data is distributed across a large number of clients in the federation while providing up to5.3x energy efficiency. In addition to efficiency, we also analyze the sensitivity of the proposed federated SNN framework to data distribution among the clients, stragglers, and gradient noise and perform a comprehensive comparison with ANNs.
We study the robustness to symmetric label noise of GNNs training procedures. By combining the nonlinear neural message-passing models (e.g. Graph Isomorphism Networks, GraphSAGE, etc.) with loss correction methods, we present a noise-tolerant approach for the graph classification task. Our experiments show that test accuracy can be improved under the artificial symmetric noisy setting.
Despite the soaring use of convolutional neural networks (CNNs) in mobile applications, uniformly sustaining high-performance inference on mobile has been elusive due to the excessive computational demands of modern CNNs and the increasing diversity of deployed devices. A popular alternative comprises offloading CNN processing to powerful cloud-based servers. Nevertheless, by relying on the cloud to produce outputs, emerging mission-critical and high-mobility applications, such as drone obstacle avoidance or interactive applications, can suffer from the dynamic connectivity conditions and the uncertain availability of the cloud. In this paper, we propose SPINN, a distributed inference system that employs synergistic device-cloud computation together with a progressive inference method to deliver fast and robust CNN inference across diverse settings. The proposed system introduces a novel scheduler that co-optimises the early-exit policy and the CNN splitting at run time, in order to adapt to dynamic conditions and meet user-defined service-level requirements. Quantitative evaluation illustrates that SPINN outperforms its state-of-the-art collaborative inference counterparts by up to 2x in achieved throughput under varying network conditions, reduces the server cost by up to 6.8x and improves accuracy by 20.7% under latency constraints, while providing robust operation under uncertain connectivity conditions and significant energy savings compared to cloud-centric execution.
In this paper, we derive generalization bounds for the two primary classes of graph neural networks (GNNs), namely graph convolutional networks (GCNs) and message passing GNNs (MPGNNs), via a PAC-Bayesian approach. Our result reveals that the maximum node degree and spectral norm of the weights govern the generalization bounds of both models. We also show that our bound for GCNs is a natural generalization of the results developed in arXiv:1707.09564v2 [cs.LG] for fully-connected and convolutional neural networks. For message passing GNNs, our PAC-Bayes bound improves over the Rademacher complexity based bound in arXiv:2002.06157v1 [cs.LG], showing a tighter dependency on the maximum node degree and the maximum hidden dimension. The key ingredients of our proofs are a perturbation analysis of GNNs and the generalization of PAC-Bayes analysis to non-homogeneous GNNs. We perform an empirical study on several real-world graph datasets and verify that our PAC-Bayes bound is tighter than others.
We introduce a probabilistic robustness measure for Bayesian Neural Networks (BNNs), defined as the probability that, given a test point, there exists a point within a bounded set such that the BNN prediction differs between the two. Such a measure can be used, for instance, to quantify the probability of the existence of adversarial examples. Building on statistical verification techniques for probabilistic models, we develop a framework that allows us to estimate probabilistic robustness for a BNN with statistical guarantees, i.e., with a priori error and confidence bounds. We provide experimental comparison for several approximate BNN inference techniques on image classification tasks associated to MNIST and a two-class subset of the GTSRB dataset. Our results enable quantification of uncertainty of BNN predictions in adversarial settings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا