In power system dynamic simulation, up to 90% of the computational time is devoted to solve the network equations, i.e., a set of linear equations. Traditional approaches are based on sparse LU factorization, which is inherently sequential. In this paper, an inverse-based network solution is proposed by a hierarchical method for computing and store the approximate inverse of the conductance matrix in electromagnetic transient (EMT) simulations. The proposed method can also efficiently update the inverse by modifying only local sub-matrices to reflect changes in the network, e.g., loss of a line. Experiments on a series of simplified 179-bus Western Interconnection demonstrate the advantages of the proposed methods.