No Arabic abstract
The randomized Gauss--Seidel method and its extension have attracted much attention recently and their convergence rates have been considered extensively. However, the convergence rates are usually determined by upper bounds, which cannot fully reflect the actual convergence. In this paper, we make a detailed analysis of their convergence behaviors. The analysis shows that the larger the singular value of $A$ is, the faster the error decays in the corresponding singular vector space, and the convergence directions are mainly driven by the large singular values at the beginning, then gradually driven by the small singular values, and finally by the smallest nonzero singular value. These results explain the phenomenon found in the extensive numerical experiments appearing in the literature that these two methods seem to converge faster at the beginning. Numerical examples are provided to confirm the above findings.
We present a novel greedy Gauss-Seidel method for solving large linear least squares problem. This method improves the greedy randomized coordinate descent (GRCD) method proposed recently by Bai and Wu [Bai ZZ, and Wu WT. On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer Linear Algebra Appl. 2019;26(4):1--15], which in turn improves the popular randomized Gauss-Seidel method. Convergence analysis of the new method is provided. Numerical experiments show that, for the same accuracy, our method outperforms the GRCD method in term of the computing time.
With a greedy strategy to construct control index set of coordinates firstly and then choosing the corresponding column submatrix in each iteration, we present a greedy block Gauss-Seidel (GBGS) method for solving large linear least squares problem. Theoretical analysis demonstrates that the convergence factor of the GBGS method can be much smaller than that of the greedy randomized coordinate descent (GRCD) method proposed recently in the literature. On the basis of the GBGS method, we further present a pseudoinverse-free greedy block Gauss-Seidel method, which doesnt need to calculate the Moore-Penrose pseudoinverse of the column submatrix in each iteration any more and hence can be achieved greater acceleration. Moreover, this method can also be used for distributed implementations. Numerical experiments show that, for the same accuracy, our methods can far outperform the GRCD method in terms of the iteration number and computing time.
In this paper, we analyze the convergence behavior of the randomized extended Kaczmarz (REK) method for all types of linear systems (consistent or inconsistent, overdetermined or underdetermined, full-rank or rank-deficient). The analysis shows that the larger the singular value of $A$ is, the faster the error decays in the corresponding right singular vector space, and as $krightarrowinfty$, $x_{k}-x_{star}$ tends to the right singular vector corresponding to the smallest singular value of $A$, where $x_{k}$ is the $k$th approximation of the REK method and $x_{star}$ is the minimum $ell_2 $-norm least squares solution. These results explain the phenomenon found in the extensive numerical experiments appearing in the literature that the REK method seems to converge faster in the beginning. A simple numerical example is provided to confirm the above findings.
Regula Falsi, or the method of false position, is a numerical method for finding an approximate solution to f(x) = 0 on a finite interval [a, b], where f is a real-valued continuous function on [a, b] and satisfies f(a)f(b) < 0. Previous studies proved the convergence of this method under certain assumptions about the function f, such as both the first and second derivatives of f do not change the sign on the interval [a, b]. In this paper, we remove those assumptions and prove the convergence of the method for all continuous functions.
In this paper, we study an adaptive planewave method for multiple eigenvalues of second-order elliptic partial equations. Inspired by the technique for the adaptive finite element analysis, we prove that the adaptive planewave method has the linear convergence rate and optimal complexity.