Do you want to publish a course? Click here

Clock model interpolation and symmetry breaking in O(2) models

305   0   0.0 ( 0 )
 Added by Jin Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by recent attempts to quantum simulate lattice models with continuous Abelian symmetries using discrete approximations, we define an extended-O(2) model by adding a $gamma cos(qvarphi)$ term to the ordinary O(2) model with angular values restricted to a $2pi$ interval. In the $gamma rightarrow infty$ limit, the model becomes an extended $q$-state clock model that reduces to the ordinary $q$-state clock model when $q$ is an integer and otherwise is a continuation of the clock model for noninteger $q$. By shifting the $2pi$ integration interval, the number of angles selected can change discontinuously and two cases need to be considered. What we call case $1$ has one more angle than what we call case $2$. We investigate this class of clock models in two space-time dimensions using Monte Carlo and tensor renormalization group methods. Both the specific heat and the magnetic susceptibility show a double-peak structure for fractional $q$. In case $1$, the small-$beta$ peak is associated with a crossover, and the large-$beta$ peak is associated with an Ising critical point, while both peaks are crossovers in case $2$. When $q$ is close to an integer by an amount $Delta q$ and the system is close to the small-$beta$ Berezinskii-Kosterlitz-Thouless transition, the system has a magnetic susceptibility that scales as $sim 1 / (Delta q)^{1 - 1/delta}$ with $delta$ estimates consistent with the magnetic critical exponent $delta = 15$. The crossover peak and the Ising critical point move to Berezinskii-Kosterlitz-Thouless transition points with the same power-law scaling. A phase diagram for this model in the $(beta, q)$ plane is sketched. These results are possibly relevant for configurable Rydberg-atom arrays where the interpolations among phases with discrete symmetries can be achieved by varying continuously the distances among atoms and the detuning frequency.



rate research

Read More

We connect explicitly the classical $O(2)$ model in 1+1 dimensions, a model sharing important features with $U(1)$ lattice gauge theory, to physical models potentially implementable on optical lattices and evolving at physical time. Using the tensor renormalization group formulation, we take the time continuum limit and check that finite dimensional projections used in recent proposals for quantum simulators provide controllable approximations of the original model. We propose two-species Bose-Hubbard models corresponding to these finite dimensional projections at strong coupling and discuss their possible implementations on optical lattices using a $^{87}$Rb and $^{41}$K Bose-Bose mixture.
We propose a minimal multi-agent model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society. This model has an intriguing spontaneous symmetry breaking transition to polarized opinion state starting from non-polarized opinion state. In order to analyze the model, we introduce an iterative map version of the model, which has very similar statistical characteristics. An approximate theoretical analysis of the numerical results are also given, based on the iterative map version.
We calculate thermodynamic potentials and their derivatives for the three-dimensional $O(2)$ model using tensor-network methods to investigate the well-known second-order phase transition. We also consider the model at non-zero chemical potential to study the Silver Blaze phenomenon, which is related to the particle number density at zero temperature. Furthermore, the temperature dependence of the number density is explored using asymmetric lattices. Our results for both zero and non-zero magnetic field, temperature, and chemical potential are consistent with those obtained using other methods.
We study perturbations that break gauge symmetries in lattice gauge theories. As a paradigmatic model, we consider the three-dimensional Abelian-Higgs (AH) model with an N-component scalar field and a noncompact gauge field, which is invariant under U(1) gauge and SU(N) transformations. We consider gauge-symmetry breaking perturbations that are quadratic in the gauge field, such as a photon mass term, and determine their effect on the critical behavior of the gauge-invariant model, focusing mainly on the continuous transitions associated with the charged fixed point of the AH field theory. We discuss their relevance and compute the (gauge-dependent) exponents that parametrize the departure from the critical behavior (continuum limit) of the gauge-invariant model. We also address the critical behavior of lattice AH models with broken gauge symmetry, showing an effective enlargement of the global symmetry, from U(N) to O(2N), which reflects a peculiar cyclic renormalization-group flow in the space of the lattice AH parameters and of the photon mass.
We propose a novel lattice calculation of spontaneous chiral symmetry breaking in QED model with 2+1 dimensional fermion brane. Considering the relativistic action with gauge symmetry we rigorously carry out path integral in Monte-Carlo simulation with Fermi-velocity relevant to effective coupling constant. We numerically show the evidence of spontaneous chiral symmetry breaking in strong coupling region with chiral condensate, low-lying mode distribution and Nambu-Goldstone boson spectrum in bare Fermi-velocty $v=0.1$. This is a feasible study to investigate the phase structure of Graphene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا