Do you want to publish a course? Click here

Combined Transmission and Distribution State-Estimation for Future Electric Grids

272   0   0.0 ( 0 )
 Added by Amritanshu Pandey
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Proliferation of grid resources on the distribution network along with the inability to forecast them accurately will render the existing methodology of grid operation and control untenable in the future. Instead, a more distributed yet coordinated approach for grid operation and control will emerge that models and analyzes the grid with a larger footprint and deeper hierarchy to unify control of disparate T&D grid resources under a common framework. Such approach will require AC state-estimation (ACSE) of joint T&D networks. Today, no practical method for realizing combined T&D ACSE exists. This paper addresses that gap from circuit-theoretic perspective through realizing a combined T&D ACSE solution methodology that is fast, convex and robust against bad-data. To address daunting challenges of problem size (million+ variables) and data-privacy, the approach is distributed both in memory and computing resources. To ensure timely convergence, the approach constructs a distributed circuit model for combined T&D networks and utilizes node-tearing techniques for efficient parallelism. To demonstrate the efficacy of the approach, combined T&D ACSE algorithm is run on large test networks that comprise of multiple T&D feeders. The results reflect the accuracy of the estimates in terms of root mean-square error and algorithm scalability in terms of wall-clock time.



rate research

Read More

Sensing and measurement systems are quintessential to the safe and reliable operation of electric power grids. Their strategic placement is of ultimate importance because it is not economically viable to install measurement systems on every node and branch of a power grid, though they need to be monitored. An overwhelming number of strategies have been developed to meet oftentimes multiple conflicting objectives. The prime challenge in formulating the problem lies in developing a heuristic or an optimization model that, though mathematically tractable and constrained in cost, leads to trustworthy technical solutions. Further, large-scale, long-term deployments pose additional challenges because the boundary conditions change as technologies evolve. For instance, the advent of new technologies in sensing and measurement, as well as in communications and networking, might impact the cost and performance of available solutions and shift initially set conditions. Also, the placement strategies developed for transmission grids might not be suitable for distribution grids, and vice versa, because of unique characteristics. Therefore, the strategies need to be flexible, to a certain extent, because no two power grids are alike. Despite the extensive literature on the present topic, the focus of published works tends to be on a specific subject, such as the optimal placement of measurements to ensure observability in transmission grids. There is a dearth of work providing a comprehensive picture for developing optimal placement strategies. Because of the ongoing efforts on the modernization of electric power grids, there is a need to consolidate the status quo while exposing its limitations to inform policymakers, industry stakeholders, and researchers on the research-and-development needs to push the boundaries for innovation.
In the case of a linear state space model, we implement an MCMC sampler with two phases. In the learning phase, a self-tuning sampler is used to learn the parameter mean and covariance structure. In the estimation phase, the parameter mean and covariance structure informs the proposed mechanism and is also used in a delayed-acceptance algorithm. Information on the resulting state of the system is given by a Gaussian mixture. In on-line mode, the algorithm is adaptive and uses a sliding window approach to accelerate sampling speed and to maintain appropriate acceptance rates. We apply the algorithm to joined state and parameter estimation in the case of irregularly sampled GPS time series data.
We experimentally validate a mode-dependent loss (MDL) estimation technique employing acorrection factor to remove the MDL estimation dependence on the SNR when using a minimum meansquare error (MMSE) equalizer. A reduction of the MDL estimation error is observed for both transmitter-side and in-span MDL emulation.
54 - Jose Horta 2018
The limited capacity of distribution grids for hosting renewable generation is one of the main challenges towards the energy transition. Local energy markets, enabling direct exchange of energy between prosumers, help to integrate the growing number of residential photovoltaic panels by scheduling flexible demand for balancing renewable energy locally. Nevertheless, existing scheduling mechanisms do not take into account the phases to which households are connected, increasing network unbalance and favoring bigger voltage rises/drops and higher losses. In this paper, we reduce network unbalance by leveraging market transactions information to dynamically allocate houses to phases using solid state switches. We propose cost effective mechanisms for the selection of households to switch and for their optimal allocation to phases. Using load flow analysis we show that only 6% of houses in our case studies need to be equipped with dynamic switches to counteract the negative impact of local energy markets while maintaining all the benefits. Combining local energy markets and dynamic phase switching we improve both overall load balancing and network unbalance, effectively augmenting DER hosting capacity of distribution grids.
We propose a neural network model for MDG and optical SNR estimation in SDM transmission. We show that the proposed neural-network-based solution estimates MDG and SNR with high accuracy and low complexity from features extracted after DSP.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا