Do you want to publish a course? Click here

The Two-Dimensional Swept Rule Applied on Heterogeneous Architectures

64   0   0.0 ( 0 )
 Added by Kyle Niemeyer
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The partial differential equations describing compressible fluid flows can be notoriously difficult to resolve on a pragmatic scale and often require the use of high performance computing systems and/or accelerators. However, these systems face scaling issues such as latency, the fixed cost of communicating information between devices in the system. The swept rule is a technique designed to minimize these costs by obtaining a solution to unsteady equations at as many possible spatial locations and times prior to communicating. In this study, we implemented and tested the swept rule for solving two-dimensional problems on heterogeneous computing systems across two distinct systems. Our solver showed a speedup range of 0.22-2.71 for the heat diffusion equation and 0.52-1.46 for the compressible Euler equations. We can conclude from this study that the swept rule offers both potential for speedups and slowdowns and that care should be taken when designing such a solver to maximize benefits. These results can help make decisions to maximize these benefits and inform designs.



rate research

Read More

Applications that exploit the architectural details of high-performance computing (HPC) systems have become increasingly invaluable in academia and industry over the past two decades. The most important hardware development of the last decade in HPC has been the General Purpose Graphics Processing Unit (GPGPU), a class of massively parallel devices that now contributes the majority of computational power in the top 500 supercomputers. As these systems grow, small costs such as latency---due to the fixed cost of memory accesses and communication---accumulate in a large simulation and become a significant barrier to performance. The swept time-space decomposition rule is a communication-avoiding technique for time-stepping stencil update formulas that attempts to reduce latency costs. This work extends the swept rule by targeting heterogeneous, CPU/GPU architectures representing current and future HPC systems. We compare our approach to a naive decomposition scheme with two test equations using an MPI+CUDA pattern on 40 processes over two nodes containing one GPU. The swept rule produces a factor of 1.9 to 23 speedup for the heat equation and a factor of 1.1 to 2.0 speedup for the Euler equations, using the same processors and work distribution, and with the best possible configurations. These results show the potential effectiveness of the swept rule for different equations and numerical schemes on massively parallel computing systems that incur substantial latency costs.
While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring standard as well as accelerated resources. Today, such resources are available as multicore processors, graphics processing units (GPUs), and other accelerators such as the Intel Xeon Phi. Any software infrastructure that claims usefulness for such environments must be able to meet their inherent challenges: massive multi-level parallelism, topology, asynchronicity, and abstraction. The General, Hybrid, and Optimized Sparse Toolkit (GHOST) is a collection of building blocks that targets algorithms dealing with sparse matrix representations on current and future large-scale systems. It implements the MPI+X paradigm, has a pure C interface, and provides hybrid-parallel numerical kernels, intelligent resource management, and truly heterogeneous parallelism for multicore CPUs, Nvidia GPUs, and the Intel Xeon Phi. We describe the details of its design with respect to the challenges posed by modern heterogeneous supercomputers and recent algorithmic developments. Implementation details which are indispensable for achieving high efficiency are pointed out and their necessity is justified by performance measurements or predictions based on performance models. The library code and several applications are available as open source. We also provide instructions on how to make use of GHOST in existing software packages, together with a case study which demonstrates the applicability and performance of GHOST as a component within a larger software stack.
We present a novel implementation of the modal discontinuous Galerkin (DG) method for hyperbolic conservation laws in two dimensions on graphics processing units (GPUs) using NVIDIAs Compute Unified Device Architecture (CUDA). Both flexible and highly accurate, DG methods accommodate parallel architectures well as their discontinuous nature produces element-local approximations. High performance scientific computing suits GPUs well, as these powerful, massively parallel, cost-effective devices have recently included support for double-precision floating point numbers. Computed examples for Euler equations over unstructured triangle meshes demonstrate the effectiveness of our implementation on an NVIDIA GTX 580 device. Profiling of our method reveals performance comparable to an existing nodal DG-GPU implementation for linear problems.
In one of the most important methods in Density Functional Theory - the Full-Potential Linearized Augmented Plane Wave (FLAPW) method - dense generalized eigenproblems are organized in long sequences. Moreover each eigenproblem is strongly correlated to the next one in the sequence. We propose a novel approach which exploits such correlation through the use of an eigensolver based on subspace iteration and accelerated with Chebyshev polynomials. The resulting solver, parallelized using the Elemental library framework, achieves excellent scalability and is competitive with current dense parallel eigensolvers.
Many applications from geosciences require simulations of seismic waves in porous media. Biots theory of poroelasticity describes the coupling between solid and fluid phases and introduces a stiff source term, thereby increasing computational cost and motivating efficient methods utilising High-Performance Computing. We present a novel realisation of the discontinuous Galerkin scheme with Arbitrary DERivative time stepping (ADER-DG) that copes with stiff source terms. To integrate this source term with a reasonable time step size, we use an element-local space-time predictor, which needs to solve medium-sized linear systems - with 1000 to 10000 unknowns - in each element update (i.e., billions of times). We present a novel block-wise back-substitution algorithm for solving these systems efficiently. In comparison to LU decomposition, we reduce the number of floating-point operations by a factor of up to 25. The block-wise back-substitution is mapped to a sequence of small matrix-matrix multiplications, for which code generators are available to generate highly optimised code. We verify the new solver thoroughly in problems of increasing complexity. We demonstrate high-order convergence for 3D problems. We verify the correct treatment of point sources, material interfaces and traction-free boundary conditions. In addition, we compare against a finite difference code for a newly defined layer over half-space problem. We find that extremely high accuracy is required to resolve the slow P-wave at a free surface, while solid particle velocities are not affected by coarser resolutions. By using a clustered local time stepping scheme, we reduce time to solution by a factor of 6 to 10 compared to global time stepping. We conclude our study with a scaling and performance analysis, demonstrating our implementations efficiency and its potential for extreme-scale simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا