Do you want to publish a course? Click here

Thermodynamics of scale-dependent Friedmann equations

55   0   0.0 ( 0 )
 Added by Pedro Bargue\\~no
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, the role of a time-varying Newton constant under the scale-dependent approach is investigated in the thermodynamics of the Friedman equations. In particular, we show that the extended Friedman equations can be derived either from equilibrium thermodynamics when the non-matter energy momentum tensor is interpreted as a fluid or from non-equilibrium thermodynamics when an entropy production term, which depends on the time-varying Newton constant, is included. Finally, a comparison between black hole and cosmological thermodynamics in the framework of scale--dependent gravity is briefly discussed.



rate research

Read More

108 - Yungui Gong , Anzhong Wang 2007
With the help of a masslike function which has dimension of energy and equals to the Misner-Sharp mass at the apparent horizon, we show that the first law of thermodynamics of the apparent horizon $dE=T_AdS_A$ can be derived from the Friedmann equation in various theories of gravity, including the Einstein, Lovelock, nonlinear, and scalar-tensor theories. This result strongly suggests that the relationship between the first law of thermodynamics of the apparent horizon and the Friedmann equation is not just a simple coincidence, but rather a more profound physical connection.
We use an alternative interpretation of quantum mechanics, based on the Bohmian trajectory approach, and show that the quantum effects can be included in the classical equation of motion via a conformal transformation on the background metric. We apply this method to the Robertson-Walker metric to derive a modified version of Friedmanns equations for a Universe consisting of scalar, spin-zero, massive particles. These modified equations include additional terms that result from the non-local nature of matter and appear as an acceleration in the expansion of the Universe. We see that the same effect may also be present in the case of an inhomogeneous expansion.
We study photon orbits in the background of $(1+3)$-dimensional static, spherically symmetric geometries. In particular, we have obtained exact analytical solutions to the null geodesic equations for light rays in terms of the Weierstra{ss} function for space-times arising in the context of scale-dependent gravity. The trajectories in the $(x-y)$ plane are shown graphically, and we make a comparison with similar geometries arising in different contexts. The light deflection angle is computed as a function of the running parameter $xi$, and an upper bound for the latter is obtained.
97 - Laszlo A. Gergely 2008
We introduce brane-worlds with non-constant tension, strenghtening the analogy with fluid membranes, which exhibit a temperature-dependence according to the empirical law established by Eotvos. This new degree of freedom allows for evolving gravitational and cosmological constants, the latter being a natural candidate for dark energy. We establish the covariant dynamics on a brane with variable tension in full generality, by considering asymmetrically embedded branes and allowing for non-standard model fields in the 5-dimensional space-time. Then we apply the formalism for a perfect fluid on a Friedmann brane, which is embedded in a 5-dimensional charged Vaidya-Anti de Sitter space-time.
We consider spatially homogeneous and isotropic cosmologies with non-zero torsion. Given the high symmetry of these universes, we adopt a specific form for the torsion tensor that preserves the homogeneity and isotropy of the spatial surfaces. Employing both covariant and metric-based techniques, we derive the torsion
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا