Do you want to publish a course? Click here

Wick rotation and the positivity of energy in quantum field theory

60   0   0.0 ( 0 )
 Added by Maxim Kontsevich
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a new axiom system for unitary quantum field theories on curved space-time backgrounds, by postulating that the partition function and the correlators extend analytically to a certain domain of complex-valued metrics. Ordinary Riemannian metrics are contained in the allowable domain, while Lorentzian metrics lie on its boundary.



rate research

Read More

Most discussions of propagators in Lee-Wick theories focus on the presence of two massive complex conjugate poles in the propagator. We show that there is in fact only one pole near the physical region, or in another representation three pole-like structures with compensating extra poles. The latter modified Lehmann representation is useful caculationally and conceptually only if one includes the resonance structure in the spectral integral.
In this paper we study the ultraviolet and infrared behaviour of the self energy of a point-like charge in the vector and scalar Lee-Wick electrodynamics in a $d+1$ dimensional space time. It is shown that in the vector case, the self energy is strictly ultraviolet finite up to $d=3$ spatial dimensions, finite in the renormalized sense for any $d$ odd, infrared divergent for $d=2$ and ultraviolet divergent for $d>2$ even. On the other hand, in the scalar case, the self energy is striclty finite for $dleq 3$, and finite, in the renormalized sense, for any $d$ odd.
One of the most important mathematical tools necessary for Quantum Field Theory calculations is the field propagator. Applications are always done in terms of plane waves and although this has furnished many magnificent results, one may still be allowed to wonder what is the form of the most general propagator that can be written. In the present paper, by exploiting what is called polar form, we find the most general propagator in the case of spinors, whether regular or singular, and we give a general discussion in the case of vectors.
114 - S. A. Fulling , F. D. Mera , 2012
The expectation values of energy density and pressure of a quantum field inside a wedge-shaped region appear to violate the expected relationship between torque and total energy as a function of angle. In particular, this is true of the well-known Deutsch--Candelas stress tensor for the electromagnetic field, whose definition requires no regularization except possibly at the vertex. Unlike a similar anomaly in the pressure exerted by a reflecting boundary against a perpendicular wall, this problem cannot be dismissed as an artifact of an ad hoc regularization.
This is the introductory chapter to the volume. We review the main idea of the localization technique and its brief history both in geometry and in QFT. We discuss localization in diverse dimensions and give an overview of the major applications of the localization calculations for supersymmetric theories. We explain the focus of the present volume.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا