Extreme-ultraviolet Late Phase in Homologous Solar Flares from a Complex Active Region


Abstract in English

Recent observations in extreme-ultraviolet (EUV) wavelengths reveal a new late phase in some solar flares, which is seen as a second peak in warm coronal emissions ($sim3$ MK) several tens of minutes to a few hours after the soft X-ray (SXR) peak. The origin of the EUV late phase (ELP) is explained by either a long-lasting cooling process in the long ELP loops, or a delayed energy ejection into the ELP loops well after the main flare heating. Using the observations with the emph{Solar Dynamics Observatory} (emph{SDO}), we investigate the production of the ELP in six homologous flares (F1--F6) originating from a complex active region (AR) NOAA 11283, with an emphasis on the emission characteristics of the flares. It is found that the main production mechanism of the ELP changes from additional heating in flare F1 to long-lasting cooling in flares F3--F6, with both mechanisms playing a role in flare F2. The transition is evidenced by an abrupt decrease of the time lag of the ELP peak, and the long-lasting cooling process in the majority of the flares is validated by a positive correlation between the flare ribbon fluence and the ELP peak intensity. We attribute the change in ELP production mechanism to an enhancement of the envelope magnetic field above the AR, which facilitates a more prompt and energetic heating of the ELP loops. In addition, the last and the only confined flare F6 exhibits an extremely large ELP. The different emission pattern revealed in this flare may reflect a different energy partitioning inside the ELP loops, which is due to a different magnetic reconnection process.

Download