Higher Rank Numerical Ranges of Normal Operators and unitary dilations


Abstract in English

We describe here the higher rank numerical range, as defined by Choi, Kribs and Zyczkowski, of a normal operator on an infinite dimensional Hilbert space in terms of its spectral measure. This generalizes a result of Avendano for self-adjoint operators. An analogous description of the numerical range of a normal operator by Durszt is derived for the higher rank numerical range as an immediate consequence. It has several interesting applications. We show using Durszts example that there exists a normal contraction $T$ for which the intersection of the higher rank numerical ranges of all unitary dilations of $T$ contains the higher rank numerical range of $T$ as a proper subset. Finally, we strengthen and generalize a result of Wu by providing a necessary and sufficient condition for the higher rank numerical range of a normal contraction being equal to the intersection of the higher rank numerical ranges of all possible unitary dilations of it.

Download