No Arabic abstract
The localization game is a pursuit-evasion game analogous to Cops and Robbers, where the robber is invisible and the cops send distance probes in an attempt to identify the location of the robber. We present a novel graph parameter called the capture time, which measures how long the localization game lasts assuming optimal play. We conjecture that the capture time is linear in the order of the graph, and show that the conjecture holds for graph families such as trees and interval graphs. We study bounds on the capture time for trees and its monotone property on induced subgraphs of trees and more general graphs. We give upper bounds for the capture time on the incidence graphs of projective planes. We finish with new bounds on the localization number and capture time using treewidth.
Quasi-median graphs are a tool commonly used by evolutionary biologists to visualise the evolution of molecular sequences. As with any graph, a quasi-median graph can contain cut vertices, that is, vertices whose removal disconnect the graph. These vertices induce a decomposition of the graph into blocks, that is, maximal subgraphs which do not contain any cut vertices. Here we show that the special structure of quasi-median graphs can be used to compute their blocks without having to compute the whole graph. In particular we present an algorithm that, for a collection of $n$ aligned sequences of length $m$, can compute the blocks of the associated quasi-median graph together with the information required to correctly connect these blocks together in run time $mathcal O(n^2m^2)$, independent of the size of the sequence alphabet. Our primary motivation for presenting this algorithm is the fact that the quasi-median graph associated to a sequence alignment must contain all most parsimonious trees for the alignment, and therefore precomputing the blocks of the graph has the potential to help speed up any method for computing such trees.
Let $P$ be a set of $n$ points in general position in the plane. A subset $I$ of $P$ is called an emph{island} if there exists a convex set $C$ such that $I = P cap C$. In this paper we define the emph{generalized island Johnson graph} of $P$ as the graph whose vertex consists of all islands of $P$ of cardinality $k$, two of which are adjacent if their intersection consists of exactly $l$ elements. We show that for large enough values of $n$, this graph is connected, and give upper and lower bounds on its diameter.
In 1971, Tutte wrote in an article that it is tempting to conjecture that every 3-connected bipartite cubic graph is hamiltonian. Motivated by this remark, Horton constructed a counterexample on 96 vertices. In a sequence of articles by different authors several smaller counterexamples were presented. The smallest of these graphs is a graph on 50 vertices which was discovered independently by Georges and Kelmans. In this article we show that there is no smaller counterexample. As all non-hamiltonian 3-connected bipartite cubic graphs in the literature have cyclic 4-cuts -- even if they have girth 6 -- it is natural to ask whether this is a necessary prerequisite. In this article we answer this question in the negative and give a construction of an infinite family of non-hamiltonian cyclically 5-connected bipartite cubic graphs. In 1969, Barnette gave a weaker version of the conjecture stating that 3-connected planar bipartite cubic graphs are hamiltonian. We show that Barnettes conjecture is true up to at least 90 vertices. We also report that a search of small non-hamiltonian 3-connected bipartite cubic graphs did not find any with genus less than 4.
The behavior of a certain random growth process is analyzed on arbitrary regular and non-regular graphs. Our argument is based on the Expander Mixing Lemma, which entails that the results are strongest for Ramanujan graphs, which asymptotically maximize the spectral gap. Further, we consider ErdH{o}s--Renyi random graphs and compare our theoretical results with computational experiments on flip graphs of point configurations. The latter is relevant for enumerating triangulations.
Graph associahedra are generalized permutohedra arising as special cases of nestohedra and hypergraphic polytopes. The graph associahedron of a graph $G$ encodes the combinatorics of search trees on $G$, defined recursively by a root $r$ together with search trees on each of the connected components of $G-r$. In particular, the skeleton of the graph associahedron is the rotation graph of those search trees. We investigate the diameter of graph associahedra as a function of some graph parameters. It is known that the diameter of the associahedra of paths of length $n$, the classical associahedra, is $2n-6$ for a large enough $n$. We give a tight bound of $Theta(m)$ on the diameter of trivially perfect graph associahedra on $m$ edges. We consider the maximum diameter of associahedra of graphs on $n$ vertices and of given tree-depth, treewidth, or pathwidth, and give lower and upper bounds as a function of these parameters. Finally, we prove that the maximum diameter of associahedra of graphs of pathwidth two is $Theta (nlog n)$.