Background and Objective: The new type of coronavirus is also called COVID-19. It began to spread at the end of 2019 and has now spread across the world. Until October 2020, It has infected around 37 million people and claimed about 1 million lives. We propose a deep learning model that can help radiologists and clinicians use chest X-rays to diagnose COVID-19 cases and show the diagnostic features of pneumonia. Methods: The approach in this study is: 1) we propose a data enhancement method to increase the diversity of the data set, thereby improving the generalization performance of the model. 2) Our deep convolution neural network model DPN-SE adds a self-attention mechanism to the DPN network. The addition of a self-attention mechanism has greatly improved the performance of the network. 3) Use the Lime interpretable library to mark the feature regions on the X-ray medical image that helps doctors more quickly diagnose COVID-19 in people. Results: Under the same network model, the data with and without data enhancement is put into the model for training respectively. At last, comparing two experimental results: among the 10 network models with different structures, 7 network models have improved their effects after using data enhancement, with an average improvement of 1% in recognition accuracy. We propose that the accuracy and recall rates of the DPN-SE network are 93% and 98% of cases (COVID vs. pneumonia bacteria vs. viral pneumonia vs. normal). Compared with the original DPN, the respective accuracy is improved by 2%. Conclusion: The data augmentation method we used has achieved effective results on a small amount of data set, showing that a reasonable data augmentation method can improve the recognition accuracy without changing the sample size and model structure. Overall, the proposed method and model can effectively become a very useful tool for clinical radiologists.