No Arabic abstract
Neuronal ensemble inference is a significant problem in the study of biological neural networks. Various methods have been proposed for ensemble inference from experimental data of neuronal activity. Among them, Bayesian inference approach with generative model was proposed recently. However, this method requires large computational cost for appropriate inference. In this work, we give an improved Bayesian inference algorithm by modifying update rule in Markov chain Monte Carlo method and introducing the idea of simulated annealing for hyperparameter control. We compare the performance of ensemble inference between our algorithm and the original one, and discuss the advantage of our method.
Generalized linear models are one of the most efficient paradigms for predicting the correlated stochastic activity of neuronal networks in response to external stimuli, with applications in many brain areas. However, when dealing with complex stimuli, the inferred coupling parameters often do not generalize across different stimulus statistics, leading to degraded performance and blowup instabilities. Here, we develop a two-step inference strategy that allows us to train robust generalized linear models of interacting neurons, by explicitly separating the effects of correlations in the stimulus from network interactions in each training step. Applying this approach to the responses of retinal ganglion cells to complex visual stimuli, we show that, compared to classical methods, the models trained in this way exhibit improved performance, are more stable, yield robust interaction networks, and generalize well across complex visual statistics. The method can be extended to deep convolutional neural networks, leading to models with high predictive accuracy for both the neuron firing rates and their correlations.
We investigate the dynamics of two models of biological networks with purely suppressive interactions between the units; species interacting via niche competition and neurons via inhibitory synaptic coupling. In both of these cases, power-law scaling of the density of states with probability arises without any fine-tuning of the model parameters. These results argue against the increasingly popular notion that non-equilibrium living systems operate at special critical points, driven by there by evolution so as to enable adaptive processing of input data.
Neural networks are able to extract information from the timing of spikes. Here we provide new results on the behavior of the simplest neuronal model which is able to decode information embedded in temporal spike patterns, the so called tempotron. Using statistical physics techniques we compute the capacity for the case of sparse, time-discretized input, and material discrete synapses, showing that the device saturates the information theoretic bounds with a statistics of output spikes that is consistent with the statistics of the inputs. We also derive two simple and highly efficient learning algorithms which are able to learn a number of associations which are close to the theoretical limit. The simple
Recent advances in deep learning and neural networks have led to an increased interest in the application of generative models in statistical and condensed matter physics. In particular, restricted Boltzmann machines (RBMs) and variational autoencoders (VAEs) as specific classes of neural networks have been successfully applied in the context of physical feature extraction and representation learning. Despite these successes, however, there is only limited understanding of their representational properties and limitations. To better understand the representational characteristics of RBMs and VAEs, we study their ability to capture physical features of the Ising model at different temperatures. This approach allows us to quantitatively assess learned representations by comparing sample features with corresponding theoretical predictions. Our results suggest that the considered RBMs and convolutional VAEs are able to capture the temperature dependence of magnetization, energy, and spin-spin correlations. The samples generated by RBMs are more evenly distributed across temperature than those generated by VAEs. We also find that convolutional layers in VAEs are important to model spin correlations whereas RBMs achieve similar or even better performances without convolutional filters.
In this paper, we introduce efficient ensemble Markov Chain Monte Carlo (MCMC) sampling methods for Bayesian computations in the univariate stochastic volatility model. We compare the performance of our ensemble MCMC methods with an improved version of a recent sampler of Kastner and Fruwirth-Schnatter (2014). We show that ensemble samplers are more efficient than this state of the art sampler by a factor of about 3.1, on a data set simulated from the stochastic volatility model. This performance gain is achieved without the ensemble MCMC sampler relying on the assumption that the latent process is linear and Gaussian, unlike the sampler of Kastner and Fruwirth-Schnatter.