Do you want to publish a course? Click here

Observation of photoelectron circular dichroism using a nanosecond laser

190   0   0.0 ( 0 )
 Added by Arne Senftleben
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Photoelectron circular dichroism (PECD) is a fascinating phenomenon both from a fundamental science aspect but also due to its emerging role as a highly sensitive analytic tool for chiral recognition in the gas phase. PECD has been studied with single-photon as well as multi-photon ionization. The latter has been investigated in the short pulse limit with femtosecond laser pulses, where ionization can be thought of as an instantaneous process. In this contribution, we demonstrate that multiphoton PECD still can be observed when using an ultra-violet nanosecond pulse to ionize chiral showcase fenchone molecules. Compared to femtosecond ionization, the magnitude of PECD is similar, but the lifetime of intermediate molecular states imprints itself in the photoelectron spectra. Being able to use an industrial nanosecond laser to investigate PECD furthermore reduces the technical requirements to apply PECD in analytical chemistry.



rate research

Read More

The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C3H3F3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly-symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic $beta_{1}$ and angular distribution $beta_{2}$ parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry $beta_{1}$ of up to about 9% for the K-shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter- and site-sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.
Photoelectron circular dichroism (PECD) is a highly sensitive enantiospecific spectroscopy for studying chiral molecules in the gas phase using either single-photon ionization or multiphoton ionization. In the short pulse limit investigated with femtosecond lasers, resonance-enhanced multiphoton ionization (REMPI) is rather instantaneous and typically occurs simultaneously via more than one vibrational or electronic intermediate state due to limited frequency resolution. In contrast, vibrational resolution in the REMPI spectrum can be achieved using nanosecond lasers. In this work, we follow the high-resolution approach using a tunable narrow-band nanosecond laser to measure REMPI-PECD through distinct vibrational levels in the intermediate 3s and 3p Rydberg states of fenchone. We observe the PECD to be essentially independent of the vibrational level. This behaviour of the chiral sensitivity may pave the way for enantiomer specific molecular identification in multi-component mixtures: one can specifically excite a sharp, vibrationally resolved transition of a distinct molecule to distinguish different chiral species in mixtures.
We report on a joint experimental and theoretical study of photoelectron circular dichroism (PECD) in methyloxirane. By detecting O 1s-photoelectrons in coincidence with fragment ions, we deduce the molecules orientation and photoelectron emission di rection in the laboratory frame. Thereby, we retrieve a fourfold differential PECD clearly beyond 50%. This strong chiral asymmetry is reproduced by ab initio electronic structure calculations. Providing such a pronounced contrast makes PECD of fixed-in-space chiral molecules an even more sensitive tool for chiral recognition in the gas phase.
Unravelling the main initial dynamics responsible for chiral recognition is a key stepin the understanding of many biological processes. However this challenging task requires a sensitive enantiospecic probe to investigate molecular dynamics on their natural femtosecond timescale. Here we show that, in the gas phase, the ultrafast relaxationdynamics of photoexcited chiral molecules can be tracked by recording Time-ResolvedPhotoElectron Circular Dichroism (TR-PECD) resulting from the photoionisation bya circularly polarized probe pulse. A large forward/backward asymmetry along theprobe propagation axis is observed in the photoelectron angular distribution. Its evolution with pump-probe delay reveals ultrafast dynamics that are inaccessible in theangle-integrated photoelectron spectrum nor via the usual electron emission anisotropyparameter ($beta$). PECD, which originates from the electron scattering in the chiral molecular potential, appears as a new sensitive observable for ultrafast molecular dynamicsin chiral systems.
The intermediate state dependence of photoelectron circular dichroism (PECD) in resonance-enhanced multi-photon ionization of fenchone in the gas phase is experimentally studied. By scanning the excitation wavelength from 359 to 431 nm we simultaneously excite up to three electronically distinct resonances. In the PECD experiment performed with a broadband femtosecond laser their respective contributions to the photoelectron spectrum can be resolved. High-resolution spectroscopy allows us to identify two of the resonances as belonging to the B- and C-bands, which involve excitation to states with 3s and 3p Rydberg character, respectively. We observe a sign change in the PECD signal depending on which electronic state is used as an intermediate. Additionally, scanning the laser wavelength reveals a decrease of PECD magnitude with increasing photoelectron energy for the 3s state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا