Do you want to publish a course? Click here

Competition of Core-Shell and Janus Morphology in Alloy Nanoparticles: Insights From a Phase-Field Model

74   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bimetallic nanoparticles (BNPs) exhibit diverse morphologies such as core-shell, Janus, onion-like, quasi-Janus, and homogeneous structures. Although extensive effort has been directed towards understanding the equilibrium configurations of BNPs, kinetic mechanisms involved in their development have not been explored systematically. Since these systems often contain a miscibility gap, experimental studies have alluded to spinodal decomposition (SD) as a likely mechanism for the formation of such structures. We present a novel phase-field model for confined (embedded)systems to study SD-induced morphological evolution within a BNP. It initiates with the formation of compositionally modulated rings as a result of surface-directed SD and eventually develops into core-shell or Janus structures due to coarsening/breakdown of the rings. The final configuration depends crucially on contact angle and particle size -Janus is favored at smaller sizes and higher contact angles. Our simulations also illustrate the formation of metastable, kinetically trapped structures as a result of competition between capillarity and diffusion.



rate research

Read More

We model shell formation of core-shell noble metal nanoparticles. A recently developed kinetic Monte Carlo approach is utilized to reproduce growth morphologies realized in recent experiments on core-shell nanoparticle synthesis, which reported smooth epitaxially grown shells. Specifically, we identify growth regimes that yield such smooth shells, but also those that lead to the formation of shells made of small clusters. The developed modeling approach allows us to qualitatively study the effects of temperature and supply the shell-metal atoms on the resulting shell morphology, when grown on a pre-synthesized nanocrystal core.
We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromegnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loops shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Ovelap functions computed from the spin configurations along the loops have been computed to explain the origin and magnitude of these features microscopically.
We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice strucutre and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and interfacial regions. By means of Monte Carlo simulations of the hysteresis loops based on this model, we have determined the range of microscopic parameters for which loop shifts after field cooling can be observed. The study of the magnetic order of the interfacial spins for different particles sizes and values of the interfacial exchange coupling have allowed us to correlate the appearance of loop asymmetries and vertical displacements to the existence of a fraction of uncompensated spins at the shell interface that remain pinned during field cycling, offering new insight on the microscopic origin of the experimental phenomenology.
We present a numerical simulation study of the exchange bias (EB) effect in nanoparticles with core/shell structure aimed to unveil the microscopic origin of some of the experimental phenomenology associated to this effect. In particular, we have focused our study on the particle size and field cooling dependence of the hysteresis loop shifts. To this end, hysteresis loops after a field cooling process have been computed by means of Monte Carlo simulations based on a model that takes into account the peculiar properties of the core, shell and interfacial regions of the particle and the EB and coercive fields have been extracted from them. The results show that, as a general trend, the EB field $h_{EB}$ decreases with increasing particle size, in agreement with some experimental observations. However, closer inspection reveals notable oscillations of $h_{EB}$ as a function of the particle radius which we show to be closely related to the net magnetization established after field cooling at the interfacial shell spins. For a particle with ferromagnetic interface coupling, we show that the magnitude and sign of $h_{EB}$ can be varied with the magnetic field applied during the cooling process.
Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin film bilayers. The main open questions posed by the experimental observations are presented and contrasted to existing theories and models for exchange bias formulated up to date. We also present results of simulations based on a simple model of a core/shell nanoparticle in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and at the interfacial regions, offering new insight on the microscopic origin of the experimental phenomenology. A detailed study of the of the magnetic order of the interfacial spins shows compelling evidence that most of the experimentally observed effects can be qualitatively accounted within the context of this model and allows also to quantify the magnitude of the loop shifts with striking agreement with the macroscopic observed values.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا