We study the effect of Kerr nonlinearity in quantum thermal machines having a Kerr-nonlinear oscillator as working substance and operating under the ideal quantum Otto cycle. We first investigate the efficiency of a Kerr-nonlinear heat engine and show that by varying the Kerr-nonlinear strength the efficiency surpasses in up to 2.5 times the efficiency of a quantum harmonic oscillator Otto engine. Moreover, the Kerr-nonlinearity makes the coefficient of performance of the Kerr-nonlinear refrigerator to be as large as 3 times the performance of quantum harmonic oscillator Otto refrigerators. These results were obtained using realistic parameters from circuit quantum electrodynamics devices formed by superconducting circuits and operating in the microwave regime.
The characterization and control of quantum effects in the performance of thermodynamic tasks may open new avenues for small thermal machines working in the nanoscale. We study the impact of coherence in the energy basis in the operation of a small thermal machine which can act either as a heat engine or as a refrigerator. We show that input coherence may enhance the machine performance and allow it to operate in otherwise forbidden regimes. Moreover, our results also indicate that, in some cases, coherence may also be detrimental, rendering optimization of particular models a crucial task for benefiting from coherence-induced enhancements.
We consider thermal machines powered by locally equilibrium reservoirs that share classical or quantum correlations. The reservoirs are modelled by the so-called collisional model or repeated interactions model. In our framework, two reservoir particles, initially prepared in a thermal state, are correlated through a unitary transformation and afterwards interact locally with the two quantum subsystems which form the working fluid. For a particular class of unitaries, we show how the transformation applied to the reservoir particles affects the amount of heat transferred and the work produced. We then compute the distribution of heat and work when the unitary is chosen randomly, proving that the total swap transformation is the optimal one. Finally, we analyse the performance of the machines in terms of classical and quantum correlations established among the microscopic constituents of the machine.
Recent years have enjoyed an overwhelming interest in quantum thermodynamics, a field of research aimed at understanding thermodynamic tasks performed in the quantum regime. Further progress, however, seems to be obstructed by the lack of experimental implementations of thermal machines in which quantum effects play a decisive role. In this work, we introduce a blueprint of quantum field machines, which - once experimentally realized - would fill this gap. Even though the concept of the QFM presented here is very general and can be implemented in any many body quantum system that can be described by a quantum field theory. We provide here a detailed proposal how to realize a quantum machine in one-dimensional ultra-cold atomic gases, which consists of a set of modular operations giving rise to a piston. These can then be coupled sequentially to thermal baths, with the innovation that a quantum field takes up the role of the working fluid. In particular, we propose models for compression on the system to use it as a piston, and coupling to a bath that gives rise to a valve controlling heat flow. These models are derived within Bogoliubov theory, which allows us to study the operational primitives numerically in an efficient way. By composing the numerically modelled operational primitives we design complete quantum thermodynamic cycles that are shown to enable cooling and hence giving rise to a quantum field refrigerator. The active cooling achieved in this way can operate in regimes where existing cooling methods become ineffective. We describe the consequences of operating the machine at the quantum level and give an outlook of how this work serves as a road map to explore open questions in quantum information, quantum thermodynamic and the study of non-Markovian quantum dynamics.
The seminal work by Sadi Carnot in the early nineteenth century provided the blueprint of a reversible heat engine and the celebrated second law of thermodynamics eventually followed. Almost two centuries later, the quest to formulate a quantum theory of the thermodynamic laws has thus unsurprisingly motivated physicists to visualise what are known as `quantum thermal machines (QTMs). In this article, we review the prominent developments achieved in the theoretical construction as well as understanding of QTMs, beginning from the formulation of their earliest prototypes to recent models. We also present a detailed introduction and highlight recent progress in the rapidly developing field of `quantum batteries.
The precise estimation of small parameters is a challenging problem in quantum metrology. Here, we introduce a protocol for accurately measuring weak magnetic fields using a two-level magnetometer, which is coupled to two (hot and cold) thermal baths and operated as a two-stroke quantum thermal machine. Its working substance consists of a two-level system (TLS), generated by an unknown weak magnetic field acting on a qubit, and a second TLS arising due to the application of a known strong and tunable field on another qubit. Depending on this field, the machine may either act as an engine or a refrigerator. Under feasible conditions, determining this transition point allows to reduce the relative error of the measurement of the weak unknown magnetic field by the ratio of the temperatures of the colder bath to the hotter bath.