Do you want to publish a course? Click here

Comments on Foliated Gauge Theories and Dualities in 3+1d

240   0   0.0 ( 0 )
 Added by Kevin Slagle
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the properties of foliated gauge fields and construct several foliated field theories in 3+1d that describe foliated fracton orders both with and without matter, including the recent hybrid fracton models. These field theories describe Abelian or non-Abelian gauge theories coupled to foliated gauge fields, and they fall into two classes of models that we call the electric models and the magnetic models. We show that these two classes of foliated field theories enjoy a duality. We also construct a model (using foliated gauge fields and an exactly solvable lattice Hamiltonian model) for a subsystem-symmetry protected topological (SSPT) phase, which is analogous to a one-form symmetry protected topological phase, with the subsystem symmetry acting on codimension-two subregions. We construct the corresponding gauged SSPT phase as a foliated two-form gauge theory. Some instances of the gauged SSPT phase are a variant of the X-cube model with the same ground state degeneracy and the same fusion, but different particle statistics.



rate research

Read More

97 - Ryan Thorngren 2020
We derive a canonical form for 2-group gauge theory in 3+1D which shows they are either equivalent to Dijkgraaf-Witten theory or to the so-called EF1 topological order of Lan-Wen. According to that classification, recently argued from a different point of view by Johnson-Freyd, this amounts to a very large class of all 3+1D TQFTs. We use this canonical form to compute all possible anomalies of 2-group gauge theory which may occur without spontaneous symmetry breaking, providing a converse of the recent symmetry-enforced-gaplessness constraints of Cordova-Ohmori and also uncovering some possible new examples. On the other hand, in cases where the anomaly is matched by a TQFT, we try to provide the simplest possible such TQFT. For example, with anomalies involving time reversal, $mathbb{Z}_2$ gauge theory almost always works.
We classify symmetry fractionalization and anomalies in a (3+1)d U(1) gauge theory enriched by a global symmetry group $G$. We find that, in general, a symmetry-enrichment pattern is specified by 4 pieces of data: $rho$, a map from $G$ to the duality symmetry group of this $mathrm{U}(1)$ gauge theory which physically encodes how the symmetry permutes the fractional excitations, $ uinmathcal{H}^2_{rho}[G, mathrm{U}_mathsf{T}(1)]$, the symmetry actions on the electric charge, $pinmathcal{H}^1[G, mathbb{Z}_mathsf{T}]$, indication of certain domain wall decoration with bosonic integer quantum Hall (BIQH) states, and a torsor $n$ over $mathcal{H}^3_{rho}[G, mathbb{Z}]$, the symmetry actions on the magnetic monopole. However, certain choices of $(rho, u, p, n)$ are not physically realizable, i.e. they are anomalous. We find that there are two levels of anomalies. The first level of anomalies obstruct the fractional excitations being deconfined, thus are referred to as the deconfinement anomaly. States with these anomalies can be realized on the boundary of a (4+1)d long-range entangled state. If a state does not suffer from a deconfinement anomaly, there can still be the second level of anomaly, the more familiar t Hooft anomaly, which forbids certain types of symmetry fractionalization patterns to be implemented in an on-site fashion. States with these anomalies can be realized on the boundary of a (4+1)d short-range entangled state. We apply these results to some interesting physical examples.
Compact quantum electrodynamics (CQED$_3$) with Dirac fermionic matter provides an adequate framework for elucidating the universal low-energy physics of a wide variety of (2+1)D strongly correlated systems. Fractionalized states of matter correspond to its deconfined phases, where the gauge field is effectively noncompact, while conventional broken-symmetry phases are associated with confinement triggered by the proliferation of monopole-instantons. While much attention has been devoted lately to the symmetry classification of monopole operators in massless CQED$_3$ and related 3D conformal field theories, explicit derivations of instanton dynamics in parton gauge theories with fermions have been lacking. In this work, we use semiclassical methods analogous to those used by t Hooft in the solution of the $U(1)$ problem in 4D quantum chromodynamics (QCD) to explicitly demonstrate the symmetry-breaking effect of instantons in CQED$_3$ with massive fermions, motivated by a fermionic parton description of hard-core bosons on a lattice. By contrast with the massless case studied by Marston, we find that massive fermions possess Euclidean zero modes exponentially localized to the center of the instanton. Such Euclidean zero modes produce in turn an effective four-fermion interaction -- known as the t Hooft vertex in QCD -- which naturally leads to two possible superfluid phases for the original microscopic bosons: a conventional single-particle condensate or an exotic boson pair condensate without single-particle condensation.
The classification of topological phases of matter in the presence of interactions is an area of intense interest. One possible means of classification is via studying the partition function under modular transforms, as the presence of an anomalous phase arising in the edge theory of a D-dimensional system under modular transformation, or modular anomaly, signals the presence of a (D+1)-D non-trivial bulk. In this work, we discuss the modular transformations of conformal field theories along a (2+1)-D and a (3+1)-D edge. Using both analytical and numerical methods, we show that chiral complex free fermions in (2+1)-D and (3+1)-D are modular invariant. However, we show in (3+1)-D that when the edge theory is coupled to a background U(1) gauge field this results in the presence of a modular anomaly that is the manifestation of a quantum Hall effect in a (4+1)-D bulk. Using the modular anomaly, we find that the edge theory of (4+1)-D insulator with spacetime inversion symmetry(P*T) and fermion number parity symmetry for each spin becomes modular invariant when 8 copies of the edges exist.
We compute the topological entanglement entropy for a large set of lattice models in $d$-dimensions. It is well known that many such quantum systems can be constructed out of lattice gauge models. For dimensionality higher than two, there are generalizations going beyond gauge theories, which are called higher gauge theories and rely on higher-order generalizations of groups. Our main concern is a large class of $d$-dimensional quantum systems derived from Abelian higher gauge theories. In this paper, we derive a general formula for the bipartition entanglement entropy for this class of models, and from it we extract both the area law and the sub-leading terms, which explicitly depend on the topology of the entangling surface. We show that the entanglement entropy $S_A$ in a sub-region $A$ is proportional to $log(GSD_{tilde{A}})$, where (GSD_{tilde{A}}) is the ground state degeneracy of a particular restriction of the full model to (A). The quantity $GSD_{tilde{A}}$ can be further divided into a contribution that scales with the size of the boundary $partial A$ and a term which depends on the topology of $partial A$. There is also a topological contribution coming from $A$ itself, that may be non-zero when $A$ has a non-trivial homology. We present some examples and discuss how the topology of $A$ affects the topological entropy. Our formalism allows us to do most of the calculation for arbitrary dimension $d$. The result is in agreement with entanglement calculations for known topological models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا