Do you want to publish a course? Click here

The Earth-like Galactic cosmic ray intensity in the habitable zone of the M dwarf GJ 436

247   0   0.0 ( 0 )
 Added by Amanda Mesquita
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galactic cosmic rays are energetic particles important in the context of life. Many works have investigated the propagation of Galactic cosmic rays through the Suns heliosphere. However, the cosmic ray fluxes in M dwarf systems are still poorly known. Studying the propagation of Galactic cosmic rays through the astrospheres of M dwarfs is important to understand the effect on their orbiting planets. Here, we focus on the planetary system GJ 436. We perform simulations using a combined 1D cosmic ray transport model and 1D Alfven-wave-driven stellar wind model. We use two stellar wind set-ups: one more magnetically-dominated and the other more thermally-dominated. Although our stellar winds have similar magnetic field and velocity profiles, they have mass-loss rates two orders of magnitude different. Because of this, they give rise to two different astrosphere sizes, one ten times larger than the other. The magnetically-dominated wind modulates the Galactic cosmic rays more at distances < 0.2 au than the thermally-dominated wind due to a higher local wind velocity. Between 0.2 and 1 au the fluxes for both cases start to converge. However, for distances > 10 au, spatial diffusion dominates, and the flux of GeV cosmic rays is almost unmodulated. We find, irrespective of the wind regime, that the flux of Galactic cosmic rays in the habitable zone of GJ 436 (0.2 - 0.4 au) is comparable with intensities observed at Earth. On the other hand, around GJ 436 b (0.028 au), both wind regimes predict Galactic cosmic ray fluxes that are approximately $10^4$ times smaller than the values observed at Earth.



rate research

Read More

Energetic particles, such as stellar cosmic rays, produced at a heightened rate by active stars (like the young Sun) may have been important for the origin of life on Earth and other exoplanets. Here we compare, as a function of stellar rotation rate ($Omega$), contributions from two distinct populations of energetic particles: stellar cosmic rays accelerated by impulsive flare events and Galactic cosmic rays. We use a 1.5D stellar wind model combined with a spatially 1D cosmic ray transport model. We formulate the evolution of the stellar cosmic ray spectrum as a function of stellar rotation. The maximum stellar cosmic ray energy increases with increasing rotation i.e., towards more active/younger stars. We find that stellar cosmic rays dominate over Galactic cosmic rays in the habitable zone at the pion threshold energy for all stellar ages considered ($t_*=0.6-2.9,$Gyr). However, even at the youngest age, $t_*=0.6,$Gyr, we estimate that $gtrsim,80$MeV stellar cosmic ray fluxes may still be transient in time. At $sim1,$Gyr when life is thought to have emerged on Earth, we demonstrate that stellar cosmic rays dominate over Galactic cosmic rays up to $sim$4$,$GeV energies during flare events. Our results for $t_*=0.6,$Gyr ($Omega = 4Omega_odot$) indicate that $lesssim$GeV stellar cosmic rays are advected from the star to 1$,$au and are impacted by adiabatic losses in this region. The properties of the inner solar wind, currently being investigated by the Parker Solar Probe and Solar Orbiter, are thus important for accurate calculations of stellar cosmic rays around young Sun-like stars.
Cosmic rays may have contributed to the start of life on Earth. Here, we investigate the evolution of the Galactic cosmic ray spectrum at Earth from ages $t = 0.6-6.0,$Gyr. We use a 1D cosmic ray transport model and a 1.5D stellar wind model to derive the evolving wind properties of a solar-type star. At $t=1,$Gyr, approximately when life is thought to have begun on Earth, we find that the intensity of $sim$GeV Galactic cosmic rays would have been $sim10$ times smaller than the present-day value. At lower kinetic energies, Galactic cosmic ray modulation would have been even more severe. More generally, we find that the differential intensity of low energy Galactic cosmic rays decreases at younger ages and is well described by a broken power-law in solar rotation rate. We provide an analytic formula of our Galactic cosmic ray spectra at Earths orbit for different ages. Our model is also applicable to other solar-type stars with exoplanets orbiting at different radii. Specifically, we use our Galactic cosmic ray spectrum at 20$,$au for $t=600,$Myr to estimate the penetration of cosmic rays in the atmosphere of HR$,$2562b, a directly imaged exoplanet orbiting a young solar-type star. We find that the majority of particles $<0.1$GeV are attenuated at pressures $gtrsim10^{-5},$bar and thus do not reach altitudes below $sim100,$km. Observationally constraining the Galactic cosmic ray spectrum in the atmosphere of a warm Jupiter would in turn help constrain the flux of cosmic rays reaching young Earth-like exoplanets.
We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly-circular 9.4-year orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68+/-0.03 days and minimum mass (m sin i) of 5.4+/-1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e=0.18+/-0.13) towards the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a super-Venus, featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own Solar system.
We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the ESO public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and other instrumental effects using a least-squares approach. Combining these new 143 measurements with 41 additional RVs from the Magellan/PFS and Keck/HIRES spectrometers, reveals 3 additional signals beyond the previously reported 7.2-day candidate, with periods of 28 days, 75 days, and a secular trend consistent with the presence of a gas giant (Period sim 10 years). The 28-day signal implies a planet candidate with a minimum mass of 4.5 Mearth orbiting well within the canonical definition of the stars liquid water habitable zone, this is, the region around the star at which an Earth-like planet could sustain liquid water on its surface. Still, the ultimate water supporting capability of this candidate depends on properties that are unknown such as its albedo, atmospheric composition and interior dynamics. The 75-day signal is less certain, being significantly affected by aliasing interactions among a potential 91-day signal, and the likely rotation period of the star at 105 days detected in two activity indices. GJ 667C is the common proper motion companion to the GJ 667AB binary, which is metal poor compared to the Sun. The presence of a super-Earth in the habitable zone of a metal poor M dwarf in a triple star system, supports the evidence that such worlds should be ubiquitous in the Galaxy.
The late-type dwarf GJ 436 is known to host a transiting Neptune-mass planet in a 2.6-day orbit. We present results of our interferometric measurements to directly determine the stellar diameter ($R_{star} = 0.455 pm 0.018 R_{odot}$) and effective temperature ($T_{rm EFF} = 3416 pm 54$ K). We combine our stellar parameters with literature time-series data, which allows us to calculate physical and orbital system parameters, including GJ 436s stellar mass ($M_{star} = 0.507^{+ 0.071}_{- 0.062} M_{odot}$) and density ($rho_* = 5.37^{+ 0.30}_{- 0.27} rho_odot$), planetary radius ($R_{p} = 0.369^{+ 0.015}_{- 0.015} R_{Jupiter}$), planetary mass ($M_{p} = 0.078^{+ 0.007}_{- 0.008} M_{Jupiter}$), implying a mean planetary density of $rho_{p} = 1.55^{+ 0.12}_{- 0.10} rho_{Jupiter}$. These values are generally in good agreement with previous literature estimates based on assumed stellar mass and photometric light curve fitting. Finally, we examine the expected phase curves of the hot Neptune GJ 436b, based on various assumptions concerning the efficiency of energy redistribution in the planetary atmosphere, and find that it could be constrained with {it Spitzer} monitoring observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا