Do you want to publish a course? Click here

SEMOUR: A Scripted Emotional Speech Repository for Urdu

108   0   0.0 ( 0 )
 Added by Nimra Zaheer
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Designing reliable Speech Emotion Recognition systems is a complex task that inevitably requires sufficient data for training purposes. Such extensive datasets are currently available in only a few languages, including English, German, and Italian. In this paper, we present SEMOUR, the first scripted database of emotion-tagged speech in the Urdu language, to design an Urdu Speech Recognition System. Our gender-balanced dataset contains 15,040 unique instances recorded by eight professional actors eliciting a syntactically complex script. The dataset is phonetically balanced, and reliably exhibits a varied set of emotions as marked by the high agreement scores among human raters in experiments. We also provide various baseline speech emotion prediction scores on the database, which could be used for various applications like personalized robot assistants, diagnosis of psychological disorders, and getting feedback from a low-tech-enabled population, etc. On a random test sample, our model correctly predicts an emotion with a state-of-the-art 92% accuracy.



rate research

Read More

Learned speech representations can drastically improve performance on tasks with limited labeled data. However, due to their size and complexity, learned representations have limited utility in mobile settings where run-time performance can be a significant bottleneck. In this work, we propose a class of lightweight non-semantic speech embedding models that run efficiently on mobile devices based on the recently proposed TRILL speech embedding. We combine novel architectural modifications with existing speed-up techniques to create embedding models that are fast enough to run in real-time on a mobile device and exhibit minimal performance degradation on a benchmark of non-semantic speech tasks. One such model (FRILL) is 32x faster on a Pixel 1 smartphone and 40% the size of TRILL, with an average decrease in accuracy of only 2%. To our knowledge, FRILL is the highest-quality non-semantic embedding designed for use on mobile devices. Furthermore, we demonstrate that these representations are useful for mobile health tasks such as non-speech human sounds detection and face-masked speech detection. Our models and code are publicly available.
A person tends to generate dynamic attention towards speech under complicated environments. Based on this phenomenon, we propose a framework combining dynamic attention and recursive learning together for monaural speech enhancement. Apart from a major noise reduction network, we design a separated sub-network, which adaptively generates the attention distribution to control the information flow throughout the major network. To effectively decrease the number of trainable parameters, recursive learning is introduced, which means that the network is reused for multiple stages, where the intermediate output in each stage is correlated with a memory mechanism. As a result, a more flexible and better estimation can be obtained. We conduct experiments on TIMIT corpus. Experimental results show that the proposed architecture obtains consistently better performance than recent state-of-the-art models in terms of both PESQ and STOI scores.
Text-to-speech (TTS) acoustic models map linguistic features into an acoustic representation out of which an audible waveform is generated. The latest and most natural TTS systems build a direct mapping between linguistic and waveform domains, like SampleRNN. This way, possible signal naturalness losses are avoided as intermediate acoustic representations are discarded. Another important dimension of study apart from naturalness is their adaptability to generate voice from new speakers that were unseen during training. In this paper we first propose the use of problem-agnostic speech embeddings in a multi-speaker acoustic model for TTS based on SampleRNN. This way we feed the acoustic model with speaker acoustically dependent representations that enrich the waveform generation more than discrete embeddings unrelated to these factors. Our first results suggest that the proposed embeddings lead to better quality voices than those obtained with discrete embeddings. Furthermore, as we can use any speech segment as an encoded representation during inference, the model is capable to generalize to new speaker identities without retraining the network. We finally show that, with a small increase of speech duration in the embedding extractor, we dramatically reduce the spectral distortion to close the gap towards the target identities.
331 - Yihui Fu , Jian Wu , Yanxin Hu 2020
In this paper, we propose a multi-channel network for simultaneous speech dereverberation, enhancement and separation (DESNet). To enable gradient propagation and joint optimization, we adopt the attentional selection mechanism of the multi-channel features, which is originally proposed in end-to-end unmixing, fixed-beamforming and extraction (E2E-UFE) structure. Furthermore, the novel deep complex convolutional recurrent network (DCCRN) is used as the structure of the speech unmixing and the neural network based weighted prediction error (WPE) is cascaded beforehand for speech dereverberation. We also introduce the staged SNR strategy and symphonic loss for the training of the network to further improve the final performance. Experiments show that in non-dereverberated case, the proposed DESNet outperforms DCCRN and most state-of-the-art structures in speech enhancement and separation, while in dereverberated scenario, DESNet also shows improvements over the cascaded WPE-DCCRN networks.
The capability of the human to pay attention to both coarse and fine-grained regions has been applied to computer vision tasks. Motivated by that, we propose a collaborative learning framework in the complex domain for monaural noise suppression. The proposed system consists of two principal modules, namely spectral feature extraction module (FEM) and stacked glance-gaze modules (GGMs). In FEM, the UNet-block is introduced after each convolution layer, enabling the feature recalibration from multiple scales. In each GGM, we decompose the multi-target optimization in the complex spectrum into two sub-tasks. Specifically, the glance path aims to suppress the noise in the magnitude domain to obtain a coarse estimation, and meanwhile, the gaze path attempts to compensate for the lost spectral detail in the complex domain. The two paths work collaboratively and facilitate spectral estimation from complementary perspectives. Besides, by repeatedly unfolding the GGMs, the intermediate result can be iteratively refined across stages and lead to the ultimate estimation of the spectrum. The experiments are conducted on the WSJ0-SI84, DNS-Challenge dataset, and Voicebank+Demand dataset. Results show that the proposed approach achieves state-of-the-art performance over previous advanced systems on the WSJ0-SI84 and DNS-Challenge dataset, and meanwhile, competitive performance is achieved on the Voicebank+Demand corpus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا