No Arabic abstract
Automatic metrics are essential for developing natural language generation (NLG) models, particularly for open-ended language generation tasks such as story generation. However, existing automatic metrics are observed to correlate poorly with human evaluation. The lack of standardized benchmark datasets makes it difficult to fully evaluate the capabilities of a metric and fairly compare different metrics. Therefore, we propose OpenMEVA, a benchmark for evaluating open-ended story generation metrics. OpenMEVA provides a comprehensive test suite to assess the capabilities of metrics, including (a) the correlation with human judgments, (b) the generalization to different model outputs and datasets, (c) the ability to judge story coherence, and (d) the robustness to perturbations. To this end, OpenMEVA includes both manually annotated stories and auto-constructed test examples. We evaluate existing metrics on OpenMEVA and observe that they have poor correlation with human judgments, fail to recognize discourse-level incoherence, and lack inferential knowledge (e.g., causal order between events), the generalization ability and robustness. Our study presents insights for developing NLG models and metrics in further research.
Despite the success of existing referenced metrics (e.g., BLEU and MoverScore), they correlate poorly with human judgments for open-ended text generation including story or dialog generation because of the notorious one-to-many issue: there are many plausible outputs for the same input, which may differ substantially in literal or semantics from the limited number of given references. To alleviate this issue, we propose UNION, a learnable unreferenced metric for evaluating open-ended story generation, which measures the quality of a generated story without any reference. Built on top of BERT, UNION is trained to distinguish human-written stories from negative samples and recover the perturbation in negative stories. We propose an approach of constructing negative samples by mimicking the errors commonly observed in existing NLG models, including repeated plots, conflicting logic, and long-range incoherence. Experiments on two story datasets demonstrate that UNION is a reliable measure for evaluating the quality of generated stories, which correlates better with human judgments and is more generalizable than existing state-of-the-art metrics.
With the recent advances of open-domain story generation, the lack of reliable automatic evaluation metrics becomes an increasingly imperative issue that hinders the fast development of story generation. According to conducted researches in this regard, learnable evaluation metrics have promised more accurate assessments by having higher correlations with human judgments. A critical bottleneck of obtaining a reliable learnable evaluation metric is the lack of high-quality training data for classifiers to efficiently distinguish plausible and implausible machine-generated stories. Previous works relied on textit{heuristically manipulated} plausible examples to mimic possible system drawbacks such as repetition, contradiction, or irrelevant content in the text level, which can be textit{unnatural} and textit{oversimplify} the characteristics of implausible machine-generated stories. We propose to tackle these issues by generating a more comprehensive set of implausible stories using {em plots}, which are structured representations of controllable factors used to generate stories. Since these plots are compact and structured, it is easier to manipulate them to generate text with targeted undesirable properties, while at the same time maintain the grammatical correctness and naturalness of the generated sentences. To improve the quality of generated implausible stories, we further apply the adversarial filtering procedure presented by citet{zellers2018swag} to select a more nuanced set of implausible texts. Experiments show that the evaluation metrics trained on our generated data result in more reliable automatic assessments that correlate remarkably better with human judgments compared to the baselines.
Automatic evaluation for open-ended natural language generation tasks remains a challenge. Existing metrics such as BLEU show a low correlation with human judgment. We propose a novel and powerful learning-based evaluation metric: Perception Score. The method measures the overall quality of the generation and scores holistically instead of only focusing on one evaluation criteria, such as word overlapping. Moreover, it also shows the amount of uncertainty about its evaluation result. By connecting the uncertainty, Perception Score gives a more accurate evaluation for the generation system. Perception Score provides state-of-the-art results on two conditional generation tasks and two unconditional generation tasks.
Standard multi-task benchmarks are essential for driving the progress of general pretraining models to generalize to various downstream tasks. However, existing benchmarks such as GLUE and GLGE tend to focus on short text understanding and generation tasks, without considering long text modeling, which requires many distinct capabilities such as modeling long-range commonsense and discourse relations, as well as the coherence and controllability of generation. The lack of standardized benchmarks makes it difficult to fully evaluate these capabilities of a model and fairly compare different models, especially Chinese pretraining models. Therefore, we propose LOT, a benchmark including two understanding and two generation tasks for Chinese long text modeling evaluation. We construct the datasets for the tasks based on various kinds of human-written Chinese stories. Besides, we release an encoder-decoder Chinese long text pretraining model named LongLM with up to 1 billion parameters. We pretrain LongLM on 120G Chinese novels with two generative tasks including text infilling and conditional continuation. Extensive experiments on LOT demonstrate that LongLM matches the performance of similar-sized pretraining models on the understanding tasks and outperforms strong baselines substantially on the generation tasks.
We investigate the less-explored task of generating open-ended questions that are typically answered by multiple sentences. We first define a new question type ontology which differentiates the nuanced nature of questions better than widely used question words. A new dataset with 4,959 questions is labeled based on the new ontology. We then propose a novel question type-aware question generation framework, augmented by a semantic graph representation, to jointly predict question focuses and produce the question. Based on this framework, we further use both exemplars and automatically generated templates to improve controllability and diversity. Experiments on two newly collected large-scale datasets show that our model improves question quality over competitive comparisons based on automatic metrics. Human judges also rate our model outputs highly in answerability, coverage of scope, and overall quality. Finally, our model variants with templates can produce questions with enhanced controllability and diversity.