Do you want to publish a course? Click here

Quasi-BIC laser enabled by high-contrast grating resonator for gas detection

109   0   0.0 ( 0 )
 Added by Tao Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we propose and numerically investigate a two-dimensional microlaser based on the concept of bound states in the continuum (BIC). The device consists of a thin gain layer (Rhodamine 6G dye-doped silica) sandwiched between two high-contrast-grating layers. The structure supports various BIC modes upon a proper choice of topological parameters; in particular it supports a high-Q quasi-BIC mode when partially breaking a bound state in the continuum at $Gamma$ point. The optically-pumped gain medium provides sufficient optical gain to compensate the quasi-BIC mode losses, enabling lasing with ultra-low pump threshold (fluence of 17 $mu$J/cm$^2$) and very narrow optical linewidth in the visible range. This innovative device displays distinguished sensing performance for gas detection, and the emission wavelength sensitively shifts to the longer wavelength with the changing of environment refractive index (in order of $5 times 10^{-4}$). The achieved bulk sensitivity is 221 nm/RIU with a high signal to noise ratio, and a record-high figure of merit reaches to 4420 RIU$^{-1}$. This ultracompact and low threshold quasi-BIC laser facilitated by the ultra-narrow resonance can serve as formidable candidate for on-chip gas sensor.



rate research

Read More

116 - Jing Wang , Jingui Ma , Peng Yuan 2017
Lasers that generate ultra-intense light pulses are under development for experiments in high-field and high-energy-density physics, as well as for applications such as particle acceleration. Extensions to even higher powers are being considered for future investigations that can only be imagined today, such as the quantum electrodynamics of plasmas and isolated attosecond-pulse generation with solid targets. For all of these areas, it is vital to produce high-contrast pulses, so that no pre-plasma is created in the target before the arrival of the main pulse. However, noise is unavoidable in high-gain amplification, and is manifested in the form of background light that accompanies pulses generated by chirped-pulse amplification (CPA). Here, we introduce a linear filtering technique based on spatio-spectral coupling, which allows in-band filtering of amplified pulses for the first time. Experiments demonstrate approximately 40 times contrast enhancement in optical parametric chirped-pulse amplification (OPCPA) and provide a foundation for scaling to much higher performance. The simplicity, efficiency, and direct compatibility with existing techniques for short-pulse generation will make spatio-spectral filtering attractive to a wide range of applications in ultrafast optics and time-resolved spectroscopy, and may open new directions in noise reduction.
Multimode interference and multipolar interplay govern functionalities of optical nanoresonators and nonlinear nanoantennas. Recently, excitation of the high-quality supercavity modes (quasi-BIC states) in individual subwavelength dielectric particles has been predicted to boost the nonlinear frequency conversion at the nanoscale. Here, we put forward the multipolar model which captures the physics behind linear and nonlinear response driven by such high-$Q$ modes in nanoresonators. We show that formation of the quasi-BIC state in the AlGaAs nanodisk can be understood through multipolar transformations of coupled leaky modes. In particular, the hybridized axially symmetric TE-polarized modes can be viewed as superpositions of multipoles, with a basis of parent multipoles constituted mainly by magnetic dipoles and octupole. The quasi-BIC point in the parameter space appears where dipolar losses are totally suppressed. The efficient optical coupling to this state is implemented via azimuthally polarized beam illumination matching its multipolar origin. We establish a one-to-one correspondence between the standard non Hermitian coupled-mode theory and multipolar models that enables transparent interpretation of scattering characteristics. Using our approach, we derive the multipolar composition of the generated second-harmonic radiation from the AlGaAs nanodisk and validate it with full-wave numerical simulations. Back-action of the second-harmonic radiation onto the fundamental frequency is taken into account in the coupled nonlinear model with pump depletion. A hybrid metal-dielectric nanoantenna is proposed to augment the conversion efficiency up to tens of per cent and actualize the nonlinear parametric downconversion. Our findings delineate the in-depth conceptual framework and novel promising strategies in the design of functional elements for nonlinear nanophotonics applications.
We use numerical simulations to demonstrate third-harmonic generation with near-unity nonlinear circular dichroism (CD) and high conversion efficiency ($ 10^{-2} text{W}^{-2}$) in asymmetric Si-on-SiO$_2$ metasurfaces. The working principle relies on the selective excitation of a quasi-bound state in the continuum, characterized by a very high ($>10^5$) quality-factor. By tuning multi-mode interference with the variation of the metasurface geometrical parameters, we show the possibility of independent control of linear CD and nonlinear CD. Our results pave the way for the development of all-dielectric metasurfaces for nonlinear chiro-optical devices with high conversion efficiency.
We demonstrate the first buried optical waveguides in diamond using focused femtosecond laser pulses. The properties of nitrogen vacancy centers are preserved in the waveguides, making them promising for diamond-based magnetometers or quantum information systems.
A continuously tunable titanium:sapphire (Ti:Sa) laser self-seeded by an extended grating cavity was demonstrated and characterized. By inserting a partially reflecting mirror inside the cavity of a classic single-cavity grating laser, two oscillators are created: a broadband power oscillator, and a narrowband oscillator with a prism beam expander and a diffraction grating in Littrow configuration. By coupling the grating cavity oscillation into the power oscillator, a power-enhanced narrow-linewidth laser oscillation is achieved. Compared to the classic grating laser, this simple modification significantly increases the laser output power without considerably broadening the linewidth. With most of the oscillating laser power confined inside the broadband power cavity and lower power incident onto the grating, the new configuration also allows higher pump power, which is typically limited by the thermal deformation of the grating coating at high oscillation power.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا