Do you want to publish a course? Click here

Bulk dissipation in the quantum anomalous Hall effect

169   0   0.0 ( 0 )
 Added by Linsey Rodenbach
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Even at the lowest accessible temperatures, measurements of the quantum anomalous Hall (QAH) effect have indicated the presence of parasitic dissipative conduction channels. There is no consensus whether parasitic conduction is related to processes in the bulk or along the edges. Here, we approach this problem by comparing transport measurements of Hall bar and Corbino geometry devices fabricated from Cr-doped (BiSb)$_2$Te$_3$. We identify bulk conduction as the dominant source of dissipation at all values of temperature and in-plane electric field. Furthermore, we observe identical breakdown phenomenology in both geometries, indicating that breakdown of the QAH phase is a bulk process. The methodology developed in this study could be used to identify dissipative conduction mechanisms in new QAH materials, ultimately guiding material development towards realization of the QAH effect at higher temperatures.



rate research

Read More

275 - Xiaosong Wu , Yike Hu , Ming Ruan 2009
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The quantum Hall effect is shown on epitaxial graphene monolayers that were deliberately grown over substrate steps and subjected to harsh processing procedures, demonstrating the robustness of the epitaxial graphene monolayers and the immunity of their transport properties to temperature, contamination and substrate imperfections. The mobility of the monolayer C-face sample is 19,000 cm^2/Vs. This is an important step towards the realization of epitaxial graphene based electronics.
123 - Bo Fu , Zi-Ang Hu , Shun-Qing Shen 2021
The chiral hinge modes are the key feature of a second order topological insulator in three dimensions. Here we propose a quadrupole index in combination of a slab Chern number in the bulk to characterize the flowing pattern of chiral hinge modes along the hinges at the intersection of the surfaces of a sample. We further utilize the topological field theory to demonstrate the correspondent connection of the chiral hinge modes to the quadrupole index and the slab Chern number, and present a picture of three-dimensional quantum anomalous Hall effect as a consequence of chiral hinge modes. The two bulk topological invariants can be measured in electric transport and magneto-optical experiments. In this way we establish the bulk-hinge correspondence in a three-dimensional second order topological insulator.
Magnetotransport measurements are presented on paramagnetic (Hg,Mn)Te quantum wells (QWs) with an inverted band structure. Gate-voltage controlled density dependent measurements reveal an unusual behavior in the transition regime from n- to p-type conductance: A very small magnetic field of approximately 70 mT is sufficient to induce a transition into the nu = -1 quantum Hall state, which extends up to at least 10 Tesla. The onset field value remains constant for a unexpectedly wide gate-voltage range. Based on temperature and angle-dependent magnetic field measurements we show that the unusual behavior results from the realization of the quantum anomalous Hall state in these magnetically doped QWs.
ZrTe$_5$ has been of recent interest as a potential Dirac/Weyl semimetal material. Here, we report the results of experiments performed via in-situ 3D double-axis rotation to extract the full $4pi$ solid angular dependence of the transport properties. A clear anomalous Hall effect (AHE) was detected for every sample, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Interestingly, the AHE takes large values when the magnetic field is rotated in-plane, with the values vanishing above $sim 60$ K where the negative longitudinal magnetoresistance (LMR) also disappears. This suggests a close relation in their origins, which we attribute to Berry curvature generated by the Weyl nodes.
The quantum anomalous Hall (QAH) state is a two-dimensional bulk insulator with a non-zero Chern number in absence of external magnetic fields. Protected gapless chiral edge states enable dissipationless current transport in electronic devices. Doping topological insulators with random magnetic impurities could realize the QAH state, but magnetic order is difficult to establish experimentally in the bulk insulating limit. Here we predict that the single quintuple layer of GdBiTe3 film could be a stoichiometric QAH insulator based on ab-initio calculations, which explicitly demonstrate ferromagnetic order and chiral edge states inside the bulk gap. We further investigate the topological quantum phase transition by tuning the lattice constant and interactions. A simple low-energy effective model is presented to capture the salient physical feature of this topological material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا