No Arabic abstract
Topological phases of matter have revolutionized the fundamental understanding of band theory and hold great promise for next-generation technologies such as low-power electronics or quantum computers. Single-gap topologies have been extensively explored, and a large number of materials have been theoretically proposed and experimentally observed. These ideas have recently been extended to multi-gap topologies, characterized by invariants that arise by the momentum space braiding of band nodes that carry non-Abelian charges. However, the constraints placed by the Fermi-Dirac distribution to electronic systems have so far prevented the experimental observation of multi-gap topologies in real materials. Here, we show that multi-gap topologies and the accompanying phase transitions driven by braiding processes can be readily observed in the bosonic phonon spectra of known monolayer silicates. The associated braiding process can be controlled by means of an electric field and epitaxial strain, and involves, for the first time, more than three bands. Finally, we propose that these conversion processes can be tracked by following the evolution of the Raman spectrum, providing a clear signature for the experimental verification of multi-gap topologies.
Non-trivial braid-group representations appear as non-Abelian quantum statistics of emergent Majorana zero modes in one and two-dimensional topological superconductors. Here, we generate such representations with topologically protected domain-wall modes in a classical analogue of the Kitaev superconducting chain, with a particle-hole like symmetry and a Z2 topological invariant. The mid-gap modes are found to exhibit distinct fusion channels and rich non-Abelian braiding properties, which are investigated using a T-junction setup. We employ the adiabatic theorem to explicitly calculate the braiding matrices for one and two pairs of these mid-gap topological defects.
In this paper, we report on the study of Abelian and non-Abelian statistics through Fabry-Perot interferometry of fractional quantum Hall (FQH) systems. Our detection of phase slips in quantum interference experiments demonstrates a powerful, new way of detecting braiding of anyons. We confirm the Abelian anyonic braiding statistics in the $ u = 7/3$ FQH state through detection of the predicted statistical phase angle of $2pi/3$, consistent with a change of the anyonic particle number by one. The $ u = 5/2$ FQH state is theoretically believed to harbor non-Abelian anyons which are Majorana, meaning that each pair of quasiparticles contain a neutral fermion orbital which can be occupied or unoccupied and hence can act as a qubit. In this case our observed statistical phase slips agree with a theoretical model where the Majoranas are strongly coupled to each other, and strongly coupled to the edge modes of the interferometer. In particular, an observed phase slip of approximately $pi$ is interpreted as a sudden flip of a qubit, or entry of a neutral fermion into the interferometer. Our results provide compelling support for the existence of non-Abelian anyons.
The quantum Hall states at filling factors $ u=5/2$ and $7/2$ are expected to have Abelian charge $e/2$ quasiparticles and non-Abelian charge $e/4$ quasiparticles. For the first time we report experimental evidence for the non-Abelian nature of excitations at $ u=7/2$ and examine the fermion parity, a topological quantum number of an even number of non-Abelian quasiparticles, by measuring resistance oscillations as a function of magnetic field in Fabry-Perot interferometers using new high purity heterostructures. The phase of observed $e/4$ oscillations is reproducible and stable over long times (hours) near $ u=5/2$ and $7/2$, indicating stability of the fermion parity. When phase fluctuations are observed, they are predominantly $pi$ phase flips, consistent with fermion parity change. We also examine lower-frequency oscillations attributable to Abelian interference processes in both states. Taken together, these results constitute new evidence for the non-Abelian nature of $e/4$ quasiparticles; the observed life-time of their combined fermion parity further strengthens the case for their utility for topological quantum computation.
The non-Abelian braiding of Majorana fermions is one of the most promising operations providing a key building block for the realization of topological quantum computation. Recently, the chiral Majorana fermions were observed in a hybrid junction btween a quantum anomalous Hall insulator and an s-wave superconductor. Here we show that if a quantum dot or Majorana zero mode couples to the chiral Majorana fermions, the resulting resonant exchange of chiral Majorana fermions can lead to the non-Abelian braiding. Remarkably, any operation in the braid group can be achieved by this scheme. We further propose electrical transport experiments to observe the braiding of four chiral Majorana fermions and demonstrate the non-Abelian braiding statistics in four-terminal devices of the hybrid junctions. Both a conductance peak due to the braiding and the braiding-order dependent conductance are predicted. These findings pave a way to perform any braiding operation of chiral Majorana fermions by electrically controllable quantum dots.
It has been argued that fluctuations of fermion parity are harmful for the demonstration of non-Abelian anyonic statistics. Here, we demonstrate a striking exception in which such fluctuations are actively used. We present a theory of coherent electron transport from a tunneling tip into a Corbino geometry Josephson junction where four Majorana bound states (MBSs) rotate. While the MBSs rotate, electron tunneling happens from the tip to one of the MBSs thereby changing the fermion parity of the MBSs. The tunneling events in combination with the rotation allow us to identify a novel braiding operator that does not commute with the braiding cycles in the absence of tunneling, revealing the non-Abelian nature of MBSs. The time-averaged tunneling current exhibits resonances as a function of the tip voltage with a period that is a direct consequence of the interference between the non-commuting braiding operations. Our work opens up a possibility for utilizing parity non-conserving processes to control non-Abelian states.